Resultados da busca
161 resultados encontrados com uma busca vazia
- O que há de novo no Simcenter STAR-CCM+ 2506?
Renderize visuais fotorrealistas com mais rapidez. Acelere a otimização do design. Crie malhas de montagens complexas com eficiência. Simule estruturas de dobra rapidamente. E muito mais. A versão mais recente do Simcenter STAR-CCM+ 2506 oferece melhorias significativas em fluxos de trabalho de simulação CFD, permitindo que você resolva problemas complexos com maior eficiência. Com desempenho aprimorado em malhas, tecnologia de solver e novos recursos de visualização, os usuários experimentarão configuração mais fácil, maior precisão, simulações mais rápidas e representações de resultados atraentes. A versão apresenta aceleração por GPU para simulações de partículas e renderização fotorrealista, recursos aprimorados de dobra para análises estruturais de válvulas e modelagem de contato aprimorada para aplicações de manufatura, como moldagem por sopro. Novos recursos, como bobinas sólidas acionadas por tensão para simulação de máquinas elétricas e configuração eficiente do sistema de engrenagens, em conjunto com a Hidrodinâmica de Partículas Suaves (SPH), expandem a aplicabilidade do Simcenter STAR-CCM+ em todos os setores. Algoritmos otimizados para remesh de superfícies e malha de peças finas garantem convergência mais robusta e rápida para geometrias desafiadoras. Desbloqueie maior fidelidade e flexibilidade para análises de máquinas eletrônicas Engenheiros que trabalham com máquinas elétricas frequentemente têm dificuldade em modelar com precisão a redistribuição da densidade de corrente através de seções transversais de bobinas sólidas, o que leva a previsões de desempenho menos precisas. Com a versão mais recente do Simcenter STAR-CCM+ 2506 , agora você pode utilizar um novo modelo de bobina de excitação dedicado, projetado especificamente para simular condutores sólidos acionados por tensão. Essa abordagem proporciona maior fidelidade e melhor usabilidade dos solvers de potencial de Elementos Finitos e Vetor Magnético de Elementos Finitos de Equilíbrio Harmônico. O novo recurso permite que condutores sólidos acionados por tensão sejam modelados nativamente nos domínios de tempo e frequência, eliminando limitações anteriores. Esse aprimoramento permite simular uma nova família de análises eletromagnéticas em máquinas eletrônicas, fornecendo previsões mais precisas de desempenho e eficiência. Simule estruturas de flexão até 7x mais rápido Elementos hexagonais lineares padrão são conhecidos por serem muito rígidos em deformações por flexão, exibindo o efeito de "travamento" que requer formulações de elementos mais caras. A versão mais recente do Simcenter STAR-CCM+ apresenta elementos hexagonais lineares aprimorados que fornecem a precisão de elementos quadráticos ao custo computacional de elementos lineares. Agora você pode experimentar simulações até 7x mais rápidas de estruturas finas com deformação por flexão, conforme demonstrado em uma simulação somente de estrutura com 83.282 elementos. Esse avanço é particularmente valioso para aplicações que envolvem componentes de paredes finas sob cargas de flexão, como peças de chapa metálica, elementos estruturais finos e projetos leves. A formulação aprimorada mantém a precisão enquanto reduz significativamente os requisitos computacionais, permitindo mais iterações de projeto e modelos maiores com o mesmo orçamento computacional. Otimize processos de fabricação complexos com modelagem de contato avançada Processos de fabricação como moldagem por sopro ou extrusão de filme/folha frequentemente envolvem componentes restringidos ou manipulados por peças adjacentes, impossibilitando a simulação precisa sem a modelagem de contato. O Simcenter STAR-CCM+ 2506 introduz a modelagem de contato com peças de geometria restritiva sem malha para o solver de fluxo viscoso, abrindo possibilidades para simulações detalhadas de uma categoria totalmente nova de aplicações de fabricação. Agora é possível definir peças de geometria restritiva como estacionárias ou móveis por meio do movimento de corpo rígido, com paredes que podem ser deslizantes, parcialmente deslizantes ou antiderrapantes. A superfície livre pode entrar em contato e ser restringida por peças, permitindo a simulação realista de processos de fabricação complexos. Esse avanço permite que os engenheiros prevejam com precisão o comportamento do material durante os processos de conformação, resultando em projetos otimizados e redução da prototipagem física. Melhore a malha de peças finas para uma convergência mais rápida A geração de malhas de qualidade para estruturas finas é fundamental para a convergência da simulação em muitas aplicações e, tradicionalmente, tem sido um desafio alcançá-la com eficiência. A versão mais recente do Simcenter STAR-CCM+ 2506 apresenta um novo gerador de malhas de volume fino, projetado para aprimorar a detecção e o processamento de geometrias finas em todo o domínio computacional. Agora é possível gerar malhas onde uma porcentagem maior do volume total é preenchida com prismas finos, com tratamento aprimorado de seções finas empilhadas. O algoritmo aprimorado proporciona uma transição aprimorada entre malhas de camada fina e malhas não estruturadas, com segmentos de curva agora totalmente compatíveis. Essas melhorias resultam em malhas de maior qualidade para estruturas finas, levando a uma convergência mais rápida e resultados mais precisos para aplicações que envolvem trocadores de calor, componentes eletrônicos, peças de chapa metálica e outras geometrias com características finas. Os recursos aprimorados de geração de malhas reduzem a necessidade de ajustes manuais de malha, simplificando o fluxo de trabalho geral da simulação. Acelere a otimização do projeto para geometrias discretizadas Engenheiros frequentemente enfrentam dificuldades com o tedioso processo de configuração de morphing de superfícies para otimização de formas com base em funções de campo. A versão mais recente do Simcenter STAR-CCM+ 2506 aborda esse desafio estendendo a Operação de Malha de Superfície de Morphing com uma nova opção de Morphing Paramétrico. Agora você pode aproveitar um fluxo de trabalho integrado entre o morpher de superfícies paramétrico e o Design Manager, permitindo a morphing confiável de qualquer geometria de entrada tesselada por meio de parâmetros vetoriais definidos pelo usuário em direções cartesianas. Essa melhoria acelera significativamente o processo de otimização de projeto para geometrias discretizadas. Crie imagens fotorrealistas rapidamente com renderização acelerada por GPU A criação de representações fotorrealistas de gêmeos digitais com resultados de simulação tradicionalmente consumia muito tempo, exigindo conhecimento especializado. O novo recurso Studio Scene do Simcenter STAR-CCM+ 2506 permite fotorrealismo sem esforço com um fluxo de trabalho intuitivo e ray tracing acelerado por GPU. Agora você pode experimentar a democratização do fotorrealismo com interação de visualização em tempo real, tornando a visualização de alta qualidade acessível a todos os usuários. O recurso fornece padrões automáticos e com reconhecimento de fluxo de trabalho que reduzem o tempo geral de configuração, juntamente com um fluxo de trabalho interativo para criar, atribuir e alterar materiais de renderização fotorrealistas. Compatível com qualquer GPU da linha NVIDIA RTX, esse recurso oferece renderização até 11 vezes mais rápida em comparação aos métodos baseados em CPU. Cópias impressas fotorrealistas podem ser criadas enquanto a simulação está em execução, permitindo que você produza visualizações atraentes para apresentações e relatórios com o mínimo de esforço. Execute simulações de transferência de calor conjugada (CHT) mais rápidas A troca de informações em interfaces de contato entre domínios fluidos e sólidos tradicionalmente impacta o desempenho da simulação devido a estratégias de particionamento subótimas. A versão mais recente do Simcenter STAR-CCM+ apresenta um novo método de particionamento chamado particionamento Inter-Continuum, otimizado especificamente para interações entre contínuos fluidos e sólidos. Agora você pode experimentar um desempenho mais rápido para simulações com múltiplos contínuos, como transferência de calor conjugada, com benefícios tanto para interfaces de contato quanto para interfaces de contato mapeadas em CPUs e GPUs. As melhorias de desempenho são substanciais, com acelerações de 21% para uma caixa de lâmina de turbina resfriada em 4 GPUs, 52% para uma simulação de gerenciamento térmico de veículo esportivo em 12 GPUs e 12% para uma simulação térmica de bateria transitória em 320 núcleos de CPU. Essas melhorias tornam o Simcenter STAR-CCM+ 2506 significativamente mais eficiente para aplicações de gerenciamento térmico em todos os setores. Acelerar a geração de malha A geração simultânea de malhas de geometrias com diferenças substanciais de tamanho pode resultar em dimensionamento abaixo do ideal, criando um gargalo nos fluxos de trabalho de pré-processamento. Com o Simcenter STAR-CCM+ 2506 , agora você pode aproveitar o novo modo de geração de malhas paralelas simultâneas por peça, que considera de forma inteligente os tamanhos das peças na atribuição de processos. Essa melhoria proporciona um aumento de velocidade de até 2,15x entre os modos simultâneo e paralelo simultâneo, tornando o uso dos recursos computacionais disponíveis mais eficiente. Você experimentará uma geração de malhas mais rápida, mantendo a qualidade consistente da malha com a execução em série. Essa melhoria é particularmente benéfica para montagens complexas com componentes de tamanhos e complexidades variados, permitindo um pré-processamento mais eficiente e tempos de resposta geral da simulação mais rápidos. Acelere a malha de superfície Para acelerar os pipelines de simulação de ponta a ponta, cada etapa, incluindo a remesh de superfície, deve contribuir para ganhos gerais de eficiência. O Simcenter STAR-CCM+ 2506 oferece recursos aprimorados de Remesh de Superfície que proporcionam uma remesh de superfície mais rápida em um único processador. Agora você pode obter uma redução de até 40% no tempo de remesh de superfície, dependendo da complexidade do caso, sem a necessidade de nenhuma entrada adicional para habilitar o recurso. Essa melhoria é particularmente valiosa para fluxos de trabalho que envolvem múltiplas operações de remesh ou geometrias grandes e complexas. Com o tempo reduzido de preparação de superfície do Simcenter STAR-CCM+ 2506 , os engenheiros podem mudar seu foco de tarefas de pré-processamento para análises valiosas e melhorias de projeto. Aumente a eficiência da combustão do LES com processamento 20% mais rápido Abordagens de Simulação de Grandes Redemoinhos (LES) para simulações de combustão instável demandam recursos computacionais substanciais e longos períodos de cálculo. O Simcenter STAR-CCM+ 2506 apresenta o esquema implícito PISO-Consistent (PISOC) para o solver de Fluxo Segregado, projetado para acelerar essas simulações exigentes. Semelhante ao SIMPLEC, nenhum relaxamento é aplicado à equação de pressão, permitindo uma convergência mais profunda do resíduo PISO. Agora você pode obter tempos de resolução mais rápidos por passo de tempo, pois o esquema requer menos corretores. Testes em um combustor de gás industrial com 51 milhões de células usando abordagens LES (WALE) e FGM mostram tempos de simulação até 20% mais rápidos. Essa melhoria aumenta significativamente a produtividade dos engenheiros que trabalham em aplicações de combustão, permitindo mais iterações de projeto dentro dos cronogramas do projeto. Execute a análise DEM com o solver nativo da GPU Simulações de partículas com Meshfree DEM tradicionalmente se limitam a solvers baseados em CPU, o que limita o tamanho e a velocidade da simulação. O Simcenter STAR-CCM+ 2506 apresenta um solver Meshfree DEM nativo de GPU que proporciona tempos de resposta mais rápidos e simulações mais econômicas e com melhor consumo de energia para uma ampla gama de aplicações que envolvem fluxo de partículas. Agora você pode executar essas simulações em GPUs, mantendo soluções equivalentes entre implementações de CPU e GPU. O DEM nativo da GPU é totalmente compatível com movimentos de corpos rígidos e DFBI (Dynamic Fluid Body Interaction), garantindo versatilidade em todas as áreas de aplicação. Esta versão marca o primeiro passo na portabilidade de todos os recursos do DEM para GPU, começando com o suporte para tipos de partículas esféricas. Com simulações mais econômicas, você pode lidar com sistemas de partículas maiores ou executar mais iterações de projeto no mesmo período, resultando em projetos otimizados para aplicações como manuseio de materiais a granel e mistura de sólidos. Amplie a percepção da simulação para o segmento digital empresarial Gerenciar dados de simulação em sistemas PLM tradicionalmente tem sido desafiador devido aos enormes tamanhos de arquivo envolvidos. Com a nova versão do Simcenter STAR-CCM+ , agora você pode visualizar arquivos de simulação (.sce) diretamente no Teamcenter sem precisar fazer check-in de grandes conjuntos de dados. A solução permite o upload rápido de resultados para o Teamcenter e inclui opções de visualização abrangentes, como histogramas, gráficos de histórico de tempo, gráficos de bolhas e mapas de calor em seus modelos 3D CAE. Essa integração perfeita mantém o vínculo digital entre os especialistas em CAE e o sistema PLM, reduzindo significativamente a sobrecarga de gerenciamento de dados. Simplifique a configuração dos sistemas de engrenagens com cinemática automatizada A configuração de simulações de sistemas de engrenagens tradicionalmente exigia cálculos manuais e a aplicação da cinemática de componentes individuais, resultando em processos de configuração trabalhosos e maior risco de erros. O Simcenter STAR-CCM+ 2506 apresenta uma abordagem de configuração eficiente para sistemas de engrenagens por meio do novo DFBI Motion Kinematics Solver e juntas especializadas. Agora você pode obter acoplamentos de movimento rápidos e fáceis para engrenagens, eliminando a necessidade de cálculos e configurações manuais complexos. Esse novo recurso é compatível com as metodologias SPH e Volume Finito, tornando-o versátil em diferentes abordagens de simulação. As aplicações incluem lubrificação de caixas de engrenagens e diferenciais, simulação de rolamentos de esferas, transmissões de aeronaves de asas rotativas e muitos outros sistemas mecânicos. O resultado é uma configuração significativamente mais fácil e eficiente de simulações de sistemas de engrenagens, permitindo que você se concentre na análise em vez da configuração do modelo. Maximize o desempenho da simulação com recursos SPH aprimorados No exigente ambiente de engenharia atual, as simulações de dinâmica de fluidos computacional (CFD) frequentemente enfrentam desafios com precisão, tempo de processamento e procedimentos complexos de configuração. Com o lançamento do Simcenter STAR-CCM+ 2506 , agora você pode aproveitar os recursos significativamente aprimorados de Hidrodinâmica de Partículas Suavizadas (SPH) que abordam esses desafios críticos de frente. Você experimentará maior precisão em aplicações de run-off e previsões de torque, juntamente com renderização de superfície livre aprimorada que fornece resultados mais realistas. A nova versão otimiza seu fluxo de trabalho com recursos aprimorados de configuração de movimento, incluindo recursos de quadro de referência para condições de contorno de entrada rotativas e configuração eficiente de simulação de sistema de engrenagens. Em termos de desempenho, os resultados são significativos – você pode atingir um tempo de resposta até 25% mais rápido e se beneficiar de uma inicialização até 3 vezes mais rápida por meio da geração otimizada de partículas fantasmas. Essas melhorias são demonstradas em benchmarks usando a GPU NVIDIA A100, onde a versão Simcenter STAR-CCM+ 2506 mostra ganhos de desempenho significativos em relação à sua antecessora. Com essas melhorias abrangentes, agora você pode se concentrar mais na inovação e menos na sobrecarga computacional, entregando melhores designs em menos tempo. Quer extrair o máximo da nova versão do Simcenter STAR-CCM+ 2506 para acelerar suas simulações, aprimorar sua visualização e otimizar projetos com mais eficiência? Agende uma reunião com a CAEXPERTS e descubra como aplicar todos esses avanços diretamente nos desafios da sua engenharia. WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- Como a simulação garante que os motores possam sobreviver às vibrações
Motor falha a 40.000 pés Em 2017, um voo da Air Asia da Austrália para Kula Lumpur teve que dar meia-volta, e as equipes de solo se prepararam para um pouso de emergência após uma falha no motor que fez todo o avião vibrar, com os assentos tremendo como a cauda de uma cascavel. Felizmente, graças à qualidade da engenharia, o motor sobreviv eu a isso, mas como os engenheiros conseguem criar motores que sobrevivam a tais situações? Veja neste post. Um motor desbalanceado é indesejável; felizmente, é possível simular o fenômeno e reduzir a chance de sua ocorrência. No entanto, trata-se de um desafio complexo que o software só recentemente conseguiu superar, portanto, é necessário primeiro analisar a raiz do problema de engenharia. O conjunto mais básico de ferramentas de um engenheiro são as equações de movimento. No entanto, para que estas sejam facilmente aplicadas a um problema de mecânica de rotores, o objeto sob investigação deve ter simetria em torno do seu eixo de rotação. Para ser mais preciso, ele precisa ter simetria axial, não simetria cíclica. Simetria axissimétrica vs simetria cíclica Para que um objeto tenha simetria axissimétrica, ele deve consistir em um sólido contínuo em torno de um eixo, como um pião. No entanto, um objeto com simetria cíclica é simétrico em torno do eixo, mas este pode consistir em setores, como as pás de um helicóptero. Geralmente, as teorias da dinâmica de rotores baseiam-se na axisimetria dos rotores, pois quaisquer dados registrados pelo observador de um objeto em rotação ciclicamente simétrica apresentarão uma frequência periódica à medida que cada pá do rotor passa por seu ponto de observação. Um objeto ciclicamente simétrico é, portanto, geralmente chamado de assimétrico no campo da mecânica de rotores. Portanto, para entender como um motor a jato desbalanceado com turbinas ciclicamente simétricas pode fazer todo o avião tremer, é preciso considerar maneiras de avaliar o rotor que não sejam o observador externo tradicional que registra o objeto em observação. Estrutura rotativa vs. fixa Ao posicionar um instrumento de medição no eixo de rotação, pode-se medir as forças na pá sem que a medição sofra com o problema de frequência. Embora isso forneça os valores necessários para a carga na(s) pá(s) da turbina, como cargas centrífugas e efeitos de Coriolis, isso cria um novo problema. Como o avião inteiro não está girando em torno desse eixo, na verdade, ele não está girando de forma alguma, não é possível avaliar o avião com esse plano de rotação, sendo necessário estudá-lo no plano inercial. Para calcular simulações precisas de tal sistema, que sejam corretas em relação à teoria, a simulação precisará adotar uma abordagem de referencial misto: o rotor deve ser calculado em um referencial rotativo, com os efeitos das rotações adicionados às equações de movimento, e o estator e os mancais (e o restante do avião) calculados em um referencial fixo. Os desenvolvedores do Simcenter 3D Rotor Dynamics e do Simcenter Nastran propõem que você acople esses referenciais no eixo de rotação e, em seguida, ofereça uma solução para a análise de modelos assimétricos. Com isso, é possível modelar o motor e o avião juntos e transferir cargas entre eles, analisando mais de perto como estabelecer problemas críticos originados no motor. Modos para frente e para trás na dinâmica do rotor Numerosas forças podem ser aplicadas a um sistema rotativo, talvez vindas de outro conjunto de rotores dentro do motor ou talvez devido a efeitos giroscópicos ou amortecimento estrutural. Nesses casos, as frequências próprias receberão uma parte imaginária, como explicamos no blog anterior, e as formas modais correspondentes se dividirão em dois modos chamados de turbilhonamento: um girando na mesma direção do rotor (chamado de modo para frente) e outro oposto (chamado de modo para trás). Por que usar harmônicos múltiplos e por que combinar um quadro fixo e rotativo Esses modos de turbilhonamento desempenham um papel crucial na engenharia de dinâmica de rotores. Eles são os padrões de deformação dominantes que aparecerão quando ocorrerem fenômenos que podem levar à instabilidade, especialmente em velocidades críticas. Portanto, para um rotor assimétrico, surge a necessidade de usar múltiplos harmônicos em uma simulação. Todos os harmônicos são então sobrepostos linearmente e recombinados durante o pós-processamento para formar gráficos de órbita. apresentamos o uso de múltiplos harmônicos para um sistema de dois rotores sob diferentes desbalanceamentos, em quadro fixo. Agora, com as versões mais recentes do Simcenter 3D e do Simcenter Nastran , é possível aplicar cargas correspondentes a diferentes harmônicos, em quadro de referência fixo ou rotativo, e recombinar o sinal final no pós-processamento. Assim, é possível considerar como as forças geradas pelo motor desbalanceado podem se propagar para o resto do avião. O rotor do avião foi danificado, e essa instabilidade criou uma vibração que se propagou por todo o avião. Embora a vibração fosse perturbadora, o avião conseguiu pousar sem uma catástrofe, então parece que as vibrações não eram exatamente iguais à frequência natural. Vamos analisar isso mais de perto, considerando o rotor (estrutura rotativa) com seu estator e rolamentos (estrutura fixa). Durante a fase de projeto, os engenheiros determinam a frequência natural para garantir que o projeto as evite o máximo possível. O primeiro passo para isso é revisar os diagramas de Campbell. Velocidades críticas e estabilidade de modelos assimétricos Como são usados pontos de referência inicial e rotacional, precisa-se entender como eles aparecem de forma diferente nos diagramas de Campbell. As frequências próprias dos modos são representadas em função da velocidade de rotação, sendo sua variação uma consequência direta do efeito giroscópico. Em um referencial inercial, a ressonância ocorre quando a velocidade de rotação corresponde a uma frequência própria. Chamam-se essas velocidades de rotação de velocidades críticas do sistema. Em um referencial rotacional, a física é menos intuitiva. Em um diagrama de Campbell, as frequências próprias dos modos progressivos inicialmente diminuem com a velocidade de rotação, atingem o eixo X na velocidade crítica (quando a velocidade crítica corresponde a uma frequência própria do modo de 0 Hz) e, em seguida, aumentam com a velocidade de rotação. No mesmo diagrama de Campbell, as frequências próprias dos modos reversos aumentam com a velocidade de rotação. As velocidades críticas dos modos reversos são encontradas na interseção da reta ω=2Ω, quando a velocidade de rotação é igual à metade da frequência própria do modo (ω=2Ω). A interpretação diferente do diagrama de Campbell em referenciais fixos e rotativos também ajuda a entender por que uma força de rotação para frente no referencial fixo é equivalente a uma força estática a 0 Hz no referencial rotativo, e por que uma força de rotação para trás no referencial rotativo é equivalente a uma força de rotação para trás a 2 Ω no referencial rotativo. Figura 1: Diagrama de Campbell nos referenciais FIXO e ROTATIVO são representados; calculados no mesmo modelo axissimétrico. Em verde: modos para frente. Uma velocidade crítica na faixa de velocidade de rotação, a 1100 rpm. Corresponde à interseção entre o modo 2 e a linha 1P (ordem 1) no referencial fixo e o eixo X no referencial rotativo (ordem 0). Em azul: modos para trás. As duas velocidades críticas na faixa de velocidade de rotação são encontradas na interseção dos modos 1 e 3 com a linha 1P (ordem 1) no referencial fixo e a linha 2P (ordem 2) no referencial rotativo. Em uma abordagem de estrutura rotativa, o rotor pode ser assimétrico (lembre-se de que a simetria cíclica não conta como simétrica nessas aplicações), mas o estator e os mancais devem ser isotrópicos. Além disso, a interpretação do diagrama de Campbell em uma estrutura rotativa não é simples. Para remover essas limitações, quando o conjunto é assimétrico, existe uma abordagem válida quando o rotor tem simetria cíclica. Isso permite calcular um diagrama de Campbell para o conjunto assimétrico e gerar resultados em um referencial fixo. Quando o rotor é cíclico simétrico, um conjunto assimétrico pode ser resolvido com o Simcenter 3D Rotor Dynamics ou o Simcenter Nastran para calcular o diagrama de Campbell, velocidades críticas e estabilidade. Essa capacidade permite que um rotor ciclicamente simétrico seja calculado em um referencial rotativo utilizando matrizes invariantes no tempo, por meio da transformação de Coleman, e depois convertido para um referencial fixo. Na imagem acima, no canto superior direito: conjunto do rotor simétrico cíclico, acoplado a um estator assimétrico por mancais anisotrópicos, resolvido graças à transformação de Coleman. No canto inferior direito, figura modal a 1500 Hz para uma velocidade de rotação de 6000 rpm. À esquerda: diagrama de Campbell em referencial fixo. A velocidade crítica deste conjunto no intervalo [0;42.000 rpm] é encontrada a 25.200 rpm, o que corresponde a uma frequência de 420 Hz. Resposta harmônica de modelos assimétricos Esperançosamente, agora está claro que uma abordagem de quadro misto pode ser usada na simulação de modelos assimétricos, nos quais o rotor será computado no quadro de referência rotativo e o estator será computado no quadro de referência fixo. O acoplamento de ambos os quadros de referência é feito no eixo de rotação. Também foi demonstrado que as cargas são aplicadas de forma diferente nos quadros rotativos e fixos: para uma mesma carga, diferentes harmônicos são usados. Como uma extensão, para vibrações computadas por uma análise de resposta harmônica, o harmônico ω₁ = Ω será necessário para computar a simulação no quadro de referência fixo nos mancais e no estator, e este harmônico será acoplado ao harmônico ω₀ a 0 Hz e ω₂ a 2 Ω para o rotor computado no quadro de referência rotativo. Em casos com forte anisotropia de mancal, harmônicos mais altos são necessários. Então, ao considerar a velocidade do rotor Ω como a frequência de varredura da simulação, diferentes coeficientes [0, 1, 2, 3, …] da série de Hill serão usados para descrever os diferentes harmônicos. Para o modelo equivalente da seção anterior, modelado em 3D usando superelementos para acelerar os cálculos, um desequilíbrio foi aplicado no centro do disco assimétrico. Conforme mostrado na figura abaixo, à direita, o deslocamento no centro do disco é gerado para cada harmônico separadamente: harmônico em 0 Hz e harmônico em 2 Ω. Os resultados dos diferentes harmônicos podem ser recombinados na forma de um gráfico de órbita em um nó escolhido e em uma frequência selecionada. Na figura à esquerda, o gráfico de órbita é representado para a frequência de referência de 350 Hz. O harmônico ω₀ 0 Hz destaca o efeito do desequilíbrio (desequilíbrio é uma força estática no referencial rotativo). Ele também fornece as coordenadas (X,Y) do centro da órbita. Seu pico é encontrado em cerca de 425 Hz, o que pode ser relacionado à simulação anterior do cálculo das velocidades críticas. Uma malha mais fina teria permitido encontrar valores mais próximos. O harmônico ω₂ m 2Ω destaca os efeitos da anisotropia do rolamento e corresponde à expansão da órbita vista à esquerda. De fato, para um sistema em desequilíbrio, orientações isotrópicas teriam fornecido um gráfico de órbita reduzido a um único ponto. Figura 4: Esquerda: diagrama de órbita no nó de desequilíbrio para resposta harmônica, a 350 Hz. Superior direito: deslocamentos no nó de desequilíbrio para o harmônico ω₀ a 0 Hz. Inferior direito: deslocamentos no nó de desequilíbrio para o harmônico ω₂ a 2 Ω. Quando o sistema rotativo é totalmente assimétrico, as vibrações no domínio da frequência podem ser estudadas no Simcenter 3D Rotor Dynamics ou no Simcenter Nastran para diferentes tipos de defeitos ou cargas do rotor, graças ao uso de múltiplos harmônicos e uma abordagem de estrutura mista. Considerando a investigação do avião, é possível modelar tanto as partes rotativas do motor quanto seus componentes fixos, como o estator e os mancais. Também pode-se determinar as frequências próprias complexas, tanto no plano fixo quanto no plano rotativo, e então combinar os resultados. Agora, com o uso de múltiplos harmônicos juntamente com a abordagem de estrutura mista, é viável considerar defeitos ou cargas anormais. Como colisões com pássaros em motores não são incomuns, é possível simular simular o efeito de uma pá do rotor sendo danificada em tal incidente. No entanto, o motor nem sempre gira na mesma velocidade e, à medida que a velocidade de rotação muda, a carga também muda. Isso também precisa ser considerado para garantir que o motor esteja seguro. Análise transitória de modelos assimétricos O mesmo modelo também pode ser resolvido em uma análise transitória. Para comparar os resultados, considera-se a mesma carga desbalanceada e reproduzamos o comportamento em estado estacionário definindo uma aceleração com velocidade de rotação crescente de 0 a 350 Hz e, em seguida, uma velocidade de rotação constante de 350 Hz. Para velocidades de rotação ou cargas variáveis ao longo do tempo, a resposta do sistema rotativo é calculada por meio de uma análise transitória. Uma combinação de superelementos para o rotor na estrutura rotativa, o estator na estrutura fixa e a montagem por mancais acelera a simulação e fornece resultados precisos. As vibrações no centro do disco durante uma aceleração seguida por uma velocidade de rotação estabilizada a 350 Hz são representadas na figura abaixo. Nessa velocidade, as vibrações (transitórias) podem ser comparadas à órbita calculada em resposta harmônica para uma simulação em estado estacionário a uma frequência de 350 Hz. Pode-se observar que a órbita em resposta harmônica para a velocidade de rotação estabilizada pode ser sobreposta à órbita em resposta harmônica quando todos os harmônicos são recombinado s, para essa frequência de 350 Hz. A vibração oscila em torno de uma posição média. Essa posição média corresponde ao centro da órbita e corresponde aos resultados do harmônico em 0 Hz para a resposta harmônica. Uma análise transitória adicional, para um cenário de estado estacionário semelhante a uma velocidade de rotação constante, fornece resultados comparáveis na resposta de frequência usando múltiplos harmônicos. Figura 5: esquerda: diagrama da órbita no nó de desequilíbrio para a análise de aceleração. Superior direito: deslocamentos no nó de desequilíbrio na simulação e evolução da velocidade de rotação do rotor. Inferior direito: zoom em alguns ciclos dos deslocamentos a 350 Hz. Conclusão Estar em um avião quando há uma falha mecânica é assustador. No entanto, você pode se consolar sabendo que o fabricante do motor e seus engenheiros consideraram muitos cenários e simularam as consequências. Embora isso fosse difícil no passado, novas ferramentas, como as do Simcenter 3D e do Simcenter Nastran , estão facilitando a construção de modelos e a simulação de mais casos, reduzindo o risco de possíveis descuidos e continuando a trabalhar para tornar as aeronaves mais seguras. Com a nova capacidade do Simcenter 3D Rotor Dynamics e do Simcenter Nastran de calcular vibrações em conjuntos rotativos assimétricos, os tipos de aplicações que podem ser solucionadas foram expandidos. De fato, como carcaças e mancais raramente são isotrópicos, rotores flexíveis que definitivamente não são axissimétricos foram deixados de lado pelas soluções de dinâmica de rotores. Agora, o diagrama de Campbell, o comportamento modificado da estrutura enrijecida em altas velocidades de rotação, defeitos do rotor como desbalanceamento ou desalinhamento, ou qualquer tipo de carga, podem ser estudados nos domínios do tempo e da frequência. Quer garantir que seu projeto de motor sobreviva a vibrações críticas e evite falhas catastróficas? Agende uma reunião com a CAEXPERTS e descubra como aplicar simulações avançadas com múltiplos harmônicos e estruturas mistas para avaliar com precisão a estabilidade e a integridade do seu sistema rotativo. Nossa equipe está pronta para ajudar você a transformar complexidade em segurança e confiabilidade. WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- Garantindo a segurança da mobilidade do hidrogênio
Bateria ou célula de combustível de hidrogênio? A eletrificação da mobilidade não é uma tendência. É um fato. A maioria dos fabricantes de equipamentos originais (OEMs) já está planejando a aposentadoria de suas frotas com motores de combustão. Mas, com a eletrificação, geralmente associamos baterias de íons de lítio a uma série de desafios inerentes. Materiais raros, ansiedade quanto à autonomia, falta de estações de recarga, segurança das baterias e poucas possibilidades de reciclagem são alguns deles. Embora pesquisas extensas estejam sendo conduzidas para solucionar esses desafios, uma alternativa está sendo considerada: veículos com células de combustível de hidrogênio. Neste artigo, discutimos como a simulação pode ajudar fabricantes de equipamentos originais (OEMs) e fornecedores a projetar e certificar virtualmente o vaso de pressão composto usado para armazenamento de hidrogênio. Hidrogênio: a fonte milagrosa de energia para o futuro da mobilidade? O hidrogênio é um dos átomos mais comuns na Terra e um recurso ilimitado; o alcance de um veículo a hidrogênio costuma ser maior do que o de veículos elétricos a bateria; uma célula de combustível de hidrogênio emite apenas vapor d'água; e um tanque de hidrogênio pode ser reabastecido em minutos. Portanto, considere as células de combustível uma alternativa cada vez mais séria às baterias. Na indústria automotiva, o Toyota Mirai e o Hyundai Nexo foram precursores. A BMW está prestes a lançar seu iHydrogen NEXT, enquanto a Daimler Truck AG e a Volvo criaram uma joint venture em 2021 " para acelerar o uso de células de combustível à base de hidrogênio ". Um número crescente de startups de mobilidade também apostam no hidrogênio. Na indústria aeroespacial, a Airbus lançou em 2020 um programa ZEROe com o objetivo de desenvolver aeronaves comerciais a hidrogênio até 2035. Líderes da indústria ferroviária, como a Siemens, também estão desenvolvendo trens a hidrogênio. Essa tendência levou muitos governos a financiar pesquisas para desenvolver a mobilidade à hidrogênio. Um exemplo recente é a França, que anunciou em 2020 que " 7 bilhões de euros serão usados como financiamento para tornar a França uma vanguarda do hidrogênio verde até 2030 ". Parece promissor... então por que apenas “27.500 veículos com célula de combustível de hidrogênio foram vendidos até o final de 2020 desde o início de suas vendas” ? Alguns desafios tecnológicos a resolver… Infelizmente, ainda não há milagre. Precisa-se de uma grande quantidade de hidrogênio para produzir cada quilowatt-hora, o que leva a dois desafios tecnológicos que limitam a expansão do hidrogênio. A produção de hidrogênio era comumente feita por meio de uma reação química (RMC) partindo de metano e água para produzir hidrogênio... e muito CO2! O hidrogênio agora é produzido de forma mais limpa por meio da eletrólise, que consiste na separação da água em hidrogênio e oxigênio... mas usando eletricidade! O armazenamento de hidrogênio deve ser feito em um pequeno volume para ser incorporado ao veículo, em um espaço disponível restrito. Isso implica em pressão muito alta, e os sistemas de armazenamento devem, obviamente, ser completamente seguros em todas as circunstâncias. Isso exigiria grandes investimentos em estações de recarga, e o custo de um carro a hidrogênio ainda é alto. Por todas essas razões, as células de combustível de hidrogênio ainda estão em fase de desenvolvimento como tecnologia para a mobilidade elétrica. Mas esses não são obstáculos intransponíveis. Armazenamento de grande quantidade de hidrogênio em veículos Tecnologias de tanques compactos, seguros em todas as circunstâncias Concentre-se no segundo desafio de engenharia relatado acima: o armazenamento seguro de uma grande quantidade de hidrogênio, em um pequeno volume, em um veículo em movimento. As tecnologias de ponta para resolver esse desafio são tanques de hidrogênio pressurizados a 700 bar! Bombas embarcadas de verdade... Recipientes de pressão de 700 bar incorporados visíveis em amarelo [ Fonte ] Um único acidente provavelmente seria fatal para os passageiros e pessoas ao redor. E obviamente destruiria a imagem de marca do hidrogênio como uma solução de mobilidade do futuro. Um acidente como esse aconteceu em 2019, não em um veículo, mas em uma estação de recarga, matando duas pessoas e destruindo tudo ao redor . Se refletirmos sobre o que um veículo em movimento normalmente consegue suportar durante sua vida útil em comparação com uma estação de recarga parada (colisão, uso indevido, dezenas de milhares de cargas e descargas, temperaturas extremas, seca, umidade...), a segurança é definitivamente um desafio de projeto para esses tanques. Os tanques de 700 bar em desenvolvimento atualmente consistem em um revestimento de polímero que garante a vedação, envolto por uma grande espessura de compósitos de fibra de carbono contínua de alta resistência, permitindo um desempenho mecânico altíssimo do tanque, e uma junta metálica com uma válvula para fechar o sistema e garantir sua integração ao veículo. Essa tecnologia é chamada de "Tipo IV", que significa 4ª geração de tanques pressurizados, ou "Vasos de Pressão Compostos". Tecnologia de vasos de pressão compostos [ Fonte ] Quantos anos e quantos dólares são necessários para certificar um vaso de pressão composto? A necessidade absoluta de garantir a segurança dos veículos a hidrogênio leva a margens de segurança muito altas impostas pelos padrões globais. A norma do Regulamento Técnico Global nº 13 , uma das principais referências globais, impõe, por exemplo, 225% de margem de segurança para a ruptura à temperatura ambiente, o que significa que um tanque de 700 bar nunca deve explodir antes de 1575 bar. A variabilidade leva os fabricantes a adicionar sua própria margem extra, de até 1700 ou 1800 bar. Isso permite garantir o sucesso dos testes de certificação e verificar, por meio de centenas de testes físicos caros e complexos, a integridade do tanque. Ruptura à temperatura ambiente, ciclagem em temperaturas extremas, efeito de danos na superfície, resistência a produtos químicos, quedas em diferentes ângulos e alturas, fluência, disparo de bala e fogo são apenas alguns dos testes impostos pelas normas de segurança. Muitos fabricantes de tanques realizam alguns desses testes internamente de forma bastante iterativa e presumem (ou esperam...) que os outros testes serão satisfatórios. Em um mercado competitivo e em crescimento, isso não é mais aceitável. É aí que a digitalização entra em ação. Projeto virtual e certificação de um vaso de pressão composto A complexidade da tecnologia da embarcação e a variedade de testes de certificação impõem novos métodos que podemos integrar às soluções CAE, visando a precisão total do gêmeo digital. As soluções Simcenter integram processos e tecnologias para descobrir o melhor projeto possível, que seja o mais compacto, leve e barato possível, capaz de transportar a quantidade esperada de hidrogênio, respeitando todas as regulamentações e permitindo uma certificação virtual do projeto original, antes da prototipagem. Escalabilidade dos métodos CAE Esses métodos CAE inovadores não pertencem aos chamados métodos "CAE padrão". Eles devem incorporar diversas físicas diferentes e, às vezes, não estão totalmente maduros no setor. No entanto, o número de analistas CAE trabalhando em certificações de tanques é, em geral, bastante pequeno, e as empresas não possuem expertise em todos os domínios. As soluções Simcenter abrangem desde métodos simplificados e automatizados, para permitir que leigos determinem projetos conceituais iniciais com mais rapidez, até métodos avançados de ponta, desenvolvidos e avaliados por meio de projetos de pesquisa com clientes industriais para modelar a complexidade. Projeto inicial de tanque de hidrogênio com simulação: avalie milhares de projetos em poucas horas Com o Simcenter, um projetista de tanques normalmente começaria com um estudo de exploração do espaço de projeto muito amplo, resultando em um ou alguns projetos preliminares. Em vez dos métodos analíticos aproximados normalmente utilizados, incorporamos fluxos de trabalho automatizados de FEM em um problema do Simcenter Heeds. Um não especialista será capaz de avaliar o desempenho de milhares de projetos (com diferentes geometrias de mandril de revestimento, geometrias de boss, materiais, camadas de compósitos, estratégias de enrolamento filamentar...) em poucas horas, em relação aos requisitos de certificação e projeto. Então, ele ou ela pode determinar os melhores candidatos para adoção final. Nesta fase, as simulações permanecem lineares ou incluem alguma não linearidade geométrica simples, e ele/ela pode usar modelos eficientes simplificados com leis básicas de materiais para todos os componentes. O posicionamento das fibras é contabilizado pela automação da execução da ferramenta integrada de terceiros, conforme descrito posteriormente. Isso proporciona muito mais precisão do que os métodos analíticos, mantendo uma eficiência bastante razoável. Fluxo de trabalho automatizado do Simcenter permitindo projeto inicial rápido e robusto de vasos de pressão A equipe de engenharia do Simcenter (anteriormente LMS Samtech) trabalhou no projeto de pesquisa OSIRHYS IV. O objetivo do projeto era desenvolver e validar esses métodos, que permitiram uma redução de 30% na massa em relação aos recipientes projetados com métodos analíticos, sem comprometer o desempenho e a capacidade. A importância da simulação do processo de fabricação de ponta a ponta de Vasos de Pressão Compostos para uma certificação virtual precisa O processo de fabricação de um vaso de pressão composto terá um impacto muito forte em seu desempenho final e na variabilidade desse desempenho. Quando negligenciados, os tanques podem até falhar antes mesmo de serem usados pela primeira vez. As soluções Simcenter simulam com precisão o processo de fabricação de ponta a ponta para avaliar a posteriori o desempenho do vaso conforme fabricado. Da moldagem rotacional… A primeira etapa é a produção do revestimento polimérico, realizada por meio de um processo de rotomoldagem. A geometria final e as propriedades mecânicas do revestimento dependem muito desse processo. Um revestimento muito fino ou mal projetado pode rachar e causar vazamentos no tanque. Já um revestimento superdimensionado reduziria a capacidade do tanque e aumentaria sua massa. O Simcenter STAR-CCM+ é usado para simular o processo de rotomoldagem. Isso inclui o controle de temperatura para atingir a geometria e as propriedades mecânicas esperadas do revestimento. …para enrolamento de filamentos… As fibras de carbono são então aplicadas ao redor do revestimento em uma sequência predefinida de orientações por meio de enrolamento filamentoso. Esse processo envolve máquinas de grande porte que enrolam as fibras ao redor do revestimento. Diversas variáveis relacionadas ao controle do processo devem ser tratadas e terão um impacto muito forte na orientação local e na espessura da carcaça composta e, portanto, no desempenho global do tanque. O Simcenter 3D permite a integração de soluções verticais especializadas de terceiros para simular com precisão o processo de enrolamento filamentoso. Todos os parâmetros de fabricação necessários ficam então disponíveis por meio de uma interface gráfica específica. Simulação de enrolamento de filamento para aplicar a orientação e espessura corretas das fibras compostas [ Referência ] … e cura O tanque é então curado, permitindo a polimerização da carcaça composta, mas possivelmente afetando o desempenho do revestimento e induzindo tensões residuais no conjunto. Durante a cura, os diferentes materiais que compõem o tanque reagem às mudanças de temperatura de maneiras muito diferentes. O Simcenter 3D integra solucionadores e métodos térmicos e mecânicos que consideram o histórico do material durante o processo de cura, determinam as deformações induzidas pelo processo e avaliam os efeitos da tensão residual no desempenho do produto. Processo de Simulação de Cura de Vaso de Pressão Certificação Virtual de Vasos de Pressão Compostos: Modele a Complexidade, com total precisão Você pode usar o Simcenter 3D , a plataforma Simcenter Mechanical, para modelar toda a complexidade dos testes de certificação. Modelos de danos em compósitos são integrados nativamente ao Simcenter 3D . Ele permite a previsão de fenômenos locais, como delaminação ou redução de rigidez, que ocorrem durante a pressurização e a despressurização. Esses métodos incluem métodos inovadores de estática e fadiga para compósitos, desenvolvidos e validados por meio de projetos industriais e aplicáveis a vasos de pressão de compósitos. Modelos termomecânicos estão disponíveis para avaliar o efeito da temperatura combinada com diferentes casos de carga mecânica. Solucionadores dinâmicos transitórios são utilizados para calcular a resistência do tanque submetido a ensaios de queda padrão. A resistência ao fogo também foi estudada por meio do projeto de pesquisa FireComp. Por fim, o Simcenter incorpora simulação em múltiplas escalas para levar em conta o comportamento microscópico do material na simulação macroscópica. Isso permite o acesso ao nível máximo de fidelidade dos modelos. Esta lista não é exaustiva. A vantagem de uma plataforma integrada é que pode-se executar todos os casos de carga em uma única plataforma. Um único usuário pode ter acesso a todos os KPIs no mesmo ambiente. Certificação Virtual do vaso de pressão composto conforme fabricado [ Referência ] Caminhos para a mobilidade do hidrogênio Se a maioria dos analistas prevê que os veículos elétricos a bateria manterão a liderança entre os carros de passeio pequenos e particulares, espera-se implementar a solução de hidrogênio cada vez mais em veículos maiores, como ônibus, caminhões, trens, navios ou empilhadeiras. Isso ocorre porque eles têm espaço disponível para vasos de pressão e as baterias de íons de lítio necessárias para alimentá-los seriam muito pesadas. As empresas envolvidas na produção de Vasos de Pressão Compostos para armazenamento de hidrogênio precisam antecipar essa expansão. A competição será acirrada. Empresas de sucesso serão precursoras, não seguidoras. Com o Simcenter, elas podem construir total confiança no gêmeo digital de seus vasos de pressão. A equipe do Simcenter está investindo muito em pesquisa. A Siemens já trabalha com clientes industriais como a Honda R&D Co., Ltd. para minimizar a incerteza das previsões e criar um gêmeo digital real. Essa colaboração ajuda a reduzir e, espera-se, um dia eliminar todos os testes físicos realizados antes da certificação, substituindo-os por simulações e otimizações confiáveis, baratas e imediatas, tudo integrado em uma única plataforma de simulação. Obviamente, a segurança também depende de como e onde a embarcação é integrada ao veículo. Ela deve ser protegida de cenários típicos de colisão, sem influenciar o peso do veículo, o NVH ou o comportamento dinâmico. O Simcenter oferece um gêmeo digital integrado e preciso para veículos elétricos, abordando os desafios de todos os domínios veiculares. Mas essa é outra história! Quer transformar os desafios do armazenamento de compostos em oportunidades concretas para sua empresa? Agende uma reunião com a CAEXPERTS e descubra como as soluções de simulação podem acelerar o desenvolvimento e a certificação virtual de vasos de pressão compostos com segurança, eficiência e inovação. Vamos juntos impulsionar a mobilidade do futuro! WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- Por dentro da engenharia das bombas de sangue: CFD na medicina
A insuficiência cardíaca é a principal causa de morte global nos últimos 15 anos, com previsão de 23,6 milhões de mortes anuais até 2030, segundo a OMS. O transplante cardíaco é uma solução, mas enfrenta limitações devido à escassez de doadores compatíveis, levando pacientes a aguardarem meses, muitas vezes sem sucesso. Para auxiliar nesses casos, dispositivos como os Ventricular Assist Devices (VADs) e a oxigenação por membrana extracorpórea (ECMO) são usados. Ambos, assim como a hemodiálise , dependem de bombas de sangue , essenciais no suporte mecânico cardíaco e pulmonar, especialmente durante cirurgias. Essas bombas, além de descartáveis e de fácil fabricação, devem ser cuidadosamente projetadas para reduzir ao máximo os danos ao sangue. Isso inclui evitar zonas de turbulência, estagnação e elevados níveis de tensão de cisalhamento, fatores que podem levar à degradação das hemácias, leucócitos e outros componentes biológicos essenciais. Desafios e soluções Bombas de sangue centrífugas são projetadas para reduzir o risco de trombose ao evitar a estagnação do fluxo. No entanto, priorizar excessivamente a eficiência pode gerar regiões de alto estresse de cisalhamento (>10 Pa) devido às altas velocidades de rotação, o que pode danificar células sanguíneas e causar complicações como sangramento, AVC e formação de coágulos. Antes, a avaliação de problemas como trombose dependia de experimentos físicos. Hoje, o uso da fluidodinâmica computacional (CFD) permite prever áreas críticas, como regiões de cisalhamento elevado, e ajustar os projetos de forma mais rápida e eficiente. As simulações também demonstram que manter a taxa de cisalhamento abaixo de certos limites reduz o risco de trombos. A avaliação do desempenho dessas bombas utiliza métricas como o tamanho das regiões de estresse elevado e a taxa de dano aos glóbulos vermelhos (hemólise). Estudos experimentais e computacionais ajudam a otimizar os projetos, minimizando danos ao sangue, especialmente em aplicações de longo prazo. Simulação de bombas de sangue O estudo de simulação, utilizando o STAR-CCM+ , em questão concentra-se na análise detalhada da bomba de sangue, com o objetivo de investigar as variáveis chaves como eficiência, perda de carga, torque do sistema e estabilidade operacional do equipamento. Os resultados numéricos foram comparados com dados experimentais disponíveis na literatura para validação do modelo. A modelagem considerou um regime de escoamento monofásico e em estado estacionário, adotando a abordagem de Moving Reference Frame (MRF) para simular a rotação do rotor. Para a modelagem da turbulência, foi utilizado o modelo k-Ômega SST, amplamente recomendado na literatura para escoamentos com forte interação rotor-estator. A malha computacional foi refinada nas regiões críticas, especialmente nas proximidades do rotor, onde ocorrem elevados gradientes de velocidade e efeitos significativos de cisalhamento. Figura 1. Geometria e malha computacional Na Figura 2 (a) e (b), são apresentados os perfis de magnitude da velocidade e de pressão absoluta para uma condição operacional de 3,5 L/min e 3500 RPM. Observa-se a presença de zonas de máximas velocidades em regiões de impulsão e externas do rotor (região de fuga), bem como zonas de baixa velocidade e escoamento estagnado no centro da bomba. Essas regiões são críticas, pois podem ser otimizadas para reduzir os riscos de danos às células sanguíneas. Figura 2. Perfil de variável: (a) velocidade; (b) pressão absoluta A Figura 3 apresenta o perfil da tensão de cisalhamento nas paredes rotativas da bomba sob as mesmas condições operacionais. As áreas com elevada tensão de cisalhamento são especialmente relevantes, pois estão associadas ao potencial de hemólise, isto é, à ruptura das hemácias e, portanto, são fundamentais na avaliação da biocompatibilidade do equipamento. Figura 3. Perfil de tensão de cisalhamento na parede Por fim, a Figura 4 exibe os resultados da simulação para diferentes condições de vazão de entrada, variando de 2,5 L/min a 6 L/min. Foram obtidos os valores de eficiência e da pressão manométrica da bomba para cada condição, os quais foram comparados com os dados experimentais disponíveis no trabalho de Malinauskas et al. (2017), demonstrando boa concordância entre os resultados numéricos e experimentais. Figura 4. Gráfico Pressão Manométrica e Eficiência pelas vazões A simulação numérica é uma ferramenta poderosa que acelera o desenvolvimento de tecnologias médicas e amplia nossa compreensão de desafios complexos. Há 15 anos, Takehisa Mori iniciou o uso de CFD no desenvolvimento de dispositivos cardiovasculares em sua empresa, revolucionando os processos de design e trazendo avanços significativos para a área. Sobre essa jornada, Mori reflete: "Quando comecei com CFD, percebi o quanto era capaz de entender melhor os projetos. Um ponto de advertência é que algumas pessoas pensam muito levianamente sobre a simulação, assumindo que qualquer coisa pode ser simulada ou imaginada. Na realidade, é importante considerar o que o problema significa e quais são as implicações físicas... Ao utilizar o CFD, podemos construir uma base para a fabricação de protótipos até certo ponto." Takehisa Mori , Gerente de Pesquisa de P&D da Principal, Terumo Corporation A simulação computacional da bomba de sangue possibilitou a identificação de regiões críticas de velocidade, pressão e tensão de cisalhamento, fatores fundamentais para otimizar o desempenho hidráulico e mitigar riscos hemáticos. O uso de ferramentas de engenharia assistida por computador (CAE) tem se mostrado essencial para reduzir o tempo e o custo de desenvolvimento, ao mesmo tempo em que aumenta a confiabilidade dos projetos. Ao aliar rigor técnico às exigências clínicas, a engenharia computacional contribui diretamente para o desenvolvimento de dispositivos médicos mais seguros, eficientes e adequados ao uso prolongado em pacientes. Referências MALINAUSKAS, Richard A. et al. FDA benchmark medical device flow models for CFD validation. Asaio Journal , v. 63, n. 2, p. 150-160, 2017. SIEMENS. Applying simulation and CFD for better medical device designs with Terumo Corporation . Siemens Blog, 18 mar. 2022. Disponível em: https://blogs.sw.siemens.com/medical-devices-pharmaceuticals/2022/03/18/applying-simulation-and-cfd-for-better-medical-device-designs-with-terumo-corporation/ . Acesso em: 5 jun. 2025. SARIZEYBEK, Ceren. DESIGN OF CENTRIFUGAL BLOOD PUMP . 2020. Tese de Doutorado. İzmir Institute of Technology. HAN, Dong et al. Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, Rotaflow and CentriMag. Medicine in novel technology and devices , v. 15, p. 100153, 2022. Garanta projetos de dispositivos médicos mais seguros e eficientes desde a fase de desenvolvimento. Fale com a CAEXPERTS e descubra como a simulação computacional pode otimizar seu projeto de bombas de sangue, reduzindo custos, prazos e riscos. Agende uma reunião! WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- Simulação FSI de bomba peristáltica para diálise mais segura
"Hardware é difícil", diz um ditado no Vale do Silício. Pode-se acrescentar: hardware que salva vidas é ainda mais difícil. Apesar de toda a grande tecnologia médica inventada pela humanidade, até hoje o rim é o único órgão que se conseguiu substituir permanentemente por uma máquina. E embora a hemodiálise já seja um grande sucesso e um salva-vidas, cada sessão dura até quatro horas, três vezes por semana, durante muitos anos, representando um fardo significativo para a vida e a segurança dos pacientes. Dito isso, foi explorado o uso dos novos recursos de modelagem estrutural, acessíveis através do Simcenter STAR-CCM+ , para ajudar a aprimorar o projeto de bombas de sangue, tornando as máquinas de diálise mais seguras e os tratamentos menos estressantes para cada paciente. A seguir, apresenta-se como alguns dos recursos do Simcenter STAR-CCM+ , juntamente com seus recursos de simulação de interação fluido-estrutura (FSI), os melhores da categoria, contribuíram para atingir esse objetivo. Aperfeiçoando a hemodiálise Aproximadamente 3 milhões de pessoas em todo o mundo recebem tratamento de hemodiálise, resultando em cerca de 1,3 milhão de sessões por dia. Embora geralmente considerado um procedimento seguro, o mau funcionamento ou o manuseio inadequado das máquinas de diálise podem causar danos graves aos pacientes, representando um risco constante e duradouro para sua saúde. Muitas lesões ou complicações estão relacionadas ao fluxo sanguíneo incorreto, onde muito ou pouco sangue é extraído do paciente, tornando o tratamento ineficaz ou causando dor ou até mesmo desmaio durante o tratamento. A taxa de fluxo sanguíneo é adaptada especificamente às necessidades de cada paciente, considerando fatores como peso, tamanho, pressão e viscosidade sanguíneas, além da saúde geral. A circulação sanguínea do paciente para o dialisador é gerenciada por uma bomba de roletes, um tipo de bomba peristáltica que utiliza roletes para comprimir e liberar um tubo flexível para mover o sangue através do tubo. A vazão sanguínea gerada pela bomba varia de acordo com o material, o comprimento e o tamanho do tubo, bem como com a qualidade e o tipo do acesso vascular. A oclusão adequada, garantindo que o tubo seja totalmente comprimido pelos roletes, também é essencial para mover o volume correto de sangue sem deslizamentos. É crucial considerar todos esses fatores no processo de projeto da bomba, validando-a em uma ampla gama de cenários para garantir o fluxo de massa sanguínea ideal e a segurança para cada paciente. Máquina de diálise. Fonte: NAGWA Do ponto de vista técnico, uma configuração de simulação com acoplamento fluido-estrutura é considerada a ferramenta ideal para gerenciar essa mistura complexa de fatores mecânicos, físicos e específicos do paciente e para garantir que o projeto funcione bem em qualquer situação. Simulação de FSI com bomba peristáltica para diálise mais segura Capturar a interação fluido-estrutura (FSI) com modelagem precisa de contato é fundamental para simulações robustas e precisas. Ao modelar com precisão a complexidade do sistema, as simulações de FSI podem ajudar a projetar bombas de sangue seguras e eficazes. Os desafios da simulação FSI de bombas peristálticas A simulação de bombas peristálticas, incluindo os domínios fluido e sólido em uma única configuração, oferece vantagens significativas. Essa abordagem integrada facilita não apenas a visualização de como as mudanças na espessura do tubo afetam a deformação no tubo, mas também como essas mudanças, por sua vez, influenciam a pressão arterial e o fluxo de massa. No entanto, simular bombas peristálticas é mais complexo do que parece. A significativa interação fluido-estrutura (FSI) significa que a deformação da tubulação impacta o fluxo do fluido e vice-versa. Isso requer um acoplamento bidirecional preciso entre dinâmica de fluidos e mecânica estrutural. A tubulação flexível apresenta comportamento não linear devido a grandes deformações e contato. O movimento peristáltico envolve contornos em movimento contínuo à medida que os rolos comprimem e liberam a tubulação. Capturar com precisão esses contornos em movimento em simulações é desafiador e requer técnicas avançadas de evolução de malha e métodos de estabilização dinâmica. A ação de bombeamento depende dos rolos comprimindo o tubo contra o revestimento, tornando crucial a modelagem precisa do contato entre o rolo, o revestimento e o tubo flexível. A modelagem incorreta do contato pode levar a previsões imprecisas das seções transversais do tubo, das pressões da bomba e das vazões. Felizmente, o Simcenter fornece todas as ferramentas necessárias para realizar simulações FSI bidirecionais de alta fidelidade e prever o comportamento de bombas peristálticas em diversos cenários. E com a tecnologia mecânica incorporada em versões mais recentes Simcenter STAR-CCM+ , a modelagem de contato se tornou mais fácil e precisa, mesmo para as aplicações mais complexas. Evolução da malha por meio de transformação de malha e remeshing dinâmico Dificuldades de modelagem de contato A modelagem de contato é essencial na mecânica estrutural, mas não existe um algoritmo que resolva com eficiência todos os tipos de problemas de contato. A solução ideal depende do tipo de contato e da precisão e robustez necessárias. O solver estrutural utiliza o Método de Penalidade para a aplicação do contato. Este método depende fortemente de um parâmetro de penalidade definido pelo usuário, que controla a rigidez do contato, ou a pressão gerada pela penetração do contato. Embora um parâmetro de penalidade alto possa gerar uma resolução de contato precisa, ele também diminui a robustez e a velocidade da simulação. Selecionar um parâmetro de penalidade ideal é particularmente difícil para problemas dinâmicos com mudanças significativas de contato, como nesta simulação de bomba peristáltica. As interações entre o sangue, o tubo flexível e os rolos, que entram e saem repetidamente de contato, levam a mudanças dinâmicas nas forças de contato e na pressão do fluido. Um parâmetro de penalidade estático causará penetração variável entre o tubo e o rotor, afetando a seção transversal do fluido e a vazão. Essa variabilidade resulta em previsões imprecisas da vazão mássica de saída da bomba e representa um desafio para a simulação direta de FSI de bomba peristáltica. A imagem abaixo mostra como diferentes parâmetros de penalidade causam variações na penetração, alterando a oclusão do tubo flexível. O gráfico abaixo mostra os fluxos de massa de saída resultantes das variações na oclusão e dá uma ideia da importância da modelagem correta do contato para a simulação correta de uma bomba peristáltica. Seção transversal de tubo comprimido para diferentes parâmetros de penalidade Fluxos de massa de saída resultantes de diferentes parâmetros de penalidade Modelagem avançada de contato com o algoritmo Uzawa Para abordar as limitações do Método da Penalidade, o solver estrutural agora introduz uma nova abordagem de modelagem de contato que combina os benefícios do Método da Penalidade e do método do Multiplicador de Lagrange, muito exato, mas computacionalmente custoso. Essa abordagem se baseia na solução iterativa do Método de Lagrange Aumentado (ALM) usando o algoritmo de Uzawa. O ALM inclui um loop de aumento adicional em cada iteração, atualizando a pressão de contato até que a precisão da restrição de contato especificada seja alcançada. Embora a velocidade de convergência de cada aumento ainda dependa do parâmetro de penalidade escolhido, a precisão da restrição de contato final não depende, facilitando o controle preciso da penetração de contato permitida pelos usuários. Diferenças entre os fluxos de massa de saída e penetração de contato entre o método Penalty e o método Uzawa Com o algoritmo Uzawa, a penetração de contato pode ser limitada a um valor específico, garantindo a precisão desejada. A figura acima demonstra como esse método mantém efetivamente a penetração de contato abaixo dos níveis alcançados com um alto valor de penalidade, melhorando ainda mais a precisão das previsões de fluxo de massa. Essa abordagem elimina a necessidade de ajustes finos extensivos do parâmetro de penalidade e, ao mesmo tempo, reduz o tempo de simulação em 6%, economizando tempo e recursos computacionais. Além da hemodiálise Com os novos métodos avançados de modelagem de contato no solver estrutural, juntamente com os melhores recursos de simulação de interação fluido-estrutura do Simcenter STAR-CCM+ , projetar bombas peristálticas confiáveis e eficientes nunca foi tão possível. Pode-se afirmar que essas simulações ajudarão a garantir que todos os aspectos do desempenho de uma bomba sejam otimizados, resultando em tratamentos mais seguros e eficazes para os pacientes. Além da hemodiálise, as bombas peristálticas desempenham um papel crucial em diversas outras aplicações, do processamento químico à fabricação de alimentos e bebidas, onde o manuseio preciso de fluidos é essencial. Quer desenvolver dispositivos médicos mais seguros e eficientes, reduzindo riscos e acelerando a inovação? Agende uma reunião com a CAEXPERTS e descubra como as simulações avançadas com o Simcenter STAR-CCM+ podem transformar seus projetos de bombas peristálticas e muito mais — com precisão, economia de tempo e segurança para o paciente em primeiro lugar. WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- Virtual Body: Uma abordagem eficiente para processos de pintura e envase com o STAR-CCM+
Apesar das transformações na indústria, certos processos críticos permanecem essenciais –como o revestimento por eletrodeposição. O que você está vendo no vídeo acima é uma etapa de fabricação fundamentalmente importante na vida de qualquer carro: revestimento de pintura por eletrodeposição da carroceria do carro em branco. "Mas por que eu me importaria?", eu ouço você perguntar. Bem, a última coisa que você quer como proprietário é uma distribuição não homogênea da espessura da tinta em seu carro - pergunte ao revendedor de automóveis quando você revender o carro, pois ele mede a espessura da tinta ao redor da carroceria. Camadas suaves e derramamentos perfeitos Ao pintar um carro, cada detalhe importa. O ar preso formado por fendas ou movimento não ideal conforme o carro mergulha pode estragar a distribuição da tinta e levar a bolhas e artefatos feios no que deveria ser uma superfície brilhante. Quando você puxa o carro por uma poça de tinta, a maneira como a tinta flui, sua viscosidade e sua tensão superficial determinam o quão suavemente ela reveste a superfície. Em última análise, o segredo da qualidade do produto final está na interação entre um corpo sólido em movimento (a carroceria do seu carro) e um fluido complexo (a poça de tinta). Mas isso não é verdade apenas para pintar um carro. Se você olhar cuidadosamente ao seu redor, notará dezenas de exemplos em que o movimento prescrito de um sólido determina os caminhos de um fluido. Veja um exemplo abaixo: Já se perguntou como o iogurte que você acabou de comer chegou suavemente ao seu copo? Junto com milhares de iogurtes a mais por minuto (a velocidade de enchimento é essencial aqui!). Em qualquer operação de enchimento, a interação entre algum movimento do bico e a dinâmica dos fluidos desempenha um papel crucial. Muita velocidade ou pressão, e o líquido espirra para todo lado; muito pouco, e o copo ou a garrafa não enche rápido o suficiente ou corretamente. O trabalho que os engenheiros enfrentam é garantir que esses processos de fabricação sejam feitos corretamente e sem tentativas e erros custosos. E se você agora se pergunta como eles fazem isso? A resposta curta é: simulação CFD. E a resposta mais longa vem a seguir. Método Virtual Body molda trabalhos de pintura e preenchimento de precisão Para modelar interações complexas entre um corpo sólido em movimento e um fluido circundante, os engenheiros contam com técnicas avançadas de simulação de CFD. Mais especificamente, tecnologias de malha móvel que permitem simular o movimento de um sólido (limite) dentro de seu entorno, pois ele afeta o fluido que o cerca. Um método estabelecido para atingir isso é a abordagem overset. Essa técnica fornece flexibilidade e precisão ao combinar malhas de fundo e ajustadas ao corpo, mas vem com altos custos computacionais e configurações comparativamente complexas. É aqui que o Método de Limite Imerso (IBM) brilha — oferecendo uma alternativa poderosa e eficiente. Ao incorporar objetos em uma malha de fundo, o IBM simplifica o processo de simulação, mantendo a precisão, reduzindo a sobrecarga computacional e melhorando a escalabilidade. Agora, pela primeira vez, na nova versão do Simcenter STAR-CCM+ 2502 , um sabor especial do IBM, conhecido como Método Virtual Body (VBM), está disponível para lidar com essas aplicações desafiadoras. Do revestimento por eletrodeposição ao enchimento de fluidos de recipientes, bombeamento de fluidos e ar, esse método permite que engenheiros de simulação de CFD peneirem seus principais indicadores de desempenho de forma mais rápida e fácil, reduzindo assim o tempo de resposta. Como funciona o Método Virtual Body ? No Método Virtual Body, os centroides de células localizados dentro de um objeto são desativados, similar ao método overset grid. Subsequentemente, os vértices próximos ao limite recém estabelecido são projetados ou encaixados nele (veja a imagem abaixo). Este método é altamente adaptável para atender a requisitos de precisão variáveis. Ao selecionar superfícies de entrada que definem o corpo virtual (como mostrado na imagem acima), o refinamento de malha adaptável pode ser empregado para atingir o nível desejado de precisão. Para níveis de refinamento mais baixos, esta abordagem permite a produção de resultados CFD rápidos e de menor fidelidade, úteis nas fases iniciais do projeto, como o estágio de projeto conceitual ou avaliações preliminares. Alternativamente, um limite pode ser colocado ao redor da geometria de entrada (ilustrada pela caixa azul na imagem acima, à esquerda) para representar o corpo virtual. Dentro desse limite, uma malha ajustada ao corpo pode ser gerada, permitindo aos usuários flexibilidade significativa para criar malhas de alta fidelidade, incluindo camadas de prisma. Essa abordagem pode produzir resultados altamente precisos. Além disso, o refinamento de malha adaptável pode ser utilizado para refinar precisamente a malha ao longo do limite virtual. Simulando o revestimento por eletrodeposição de uma carroceria em branco com o Método Virtual Body Em simulações de revestimento por eletrodeposição, o foco está em entender como o fluxo de fluidos e as interações de superfície afetam a uniformidade do revestimento, a eficiência da cobertura, a qualidade da superfície pós-revestimento, etc. O Método Virtual Body é o método ideal para essas aplicações, pois pode oferecer resultados altamente precisos com escalabilidade superior e tempo de computação reduzido. Desempenho de simulação para imersão de tinta aproveitando o Método Virtual Body Virtual Body – simulando envase Simular aplicações de enchimento é tudo sobre capturar a interação delicada do fluido e do recipiente. Desde garantir fluxo consistente até evitar respingos e bolhas de ar, essas simulações ajudam engenheiros a otimizar eficiência, precisão e qualidade em linhas de produção de alta velocidade. A notável escalabilidade oferecida pelo Método Virtual Body permite iterações de design significativamente mais rápidas e otimização de processo mais eficiente para aplicações de envase de garrafas e iogurtes. Ao otimizar a produção e aumentar a adaptabilidade, esse método dá aos fabricantes uma vantagem competitiva significativa na entrega eficiente de produtos de alta qualidade. Redefinindo a precisão: A chegada do Método Virtual Body para pintura e envase Da próxima vez que você admirar o carro recém-pintado enquanto você toma um copo de iogurte, lembre-se: há um mundo de ciência por trás de cada gota! Um mundo onde simulações virtuais e realidade se entrelaçam para criar a perfeição. A era do Método Virtual Body pode ter começado com tinta e garrafas, mas certamente não se limita a elas. Esta abordagem inovadora no Simcenter STAR-CCM+ abre uma vasta gama de oportunidades em vários setores – para agitá-los e sacudi-los. Agende uma reunião com a CAEXPERTS e descubra como a simulação CFD pode revolucionar seus processos de fabricação. Não deixe a eficiência e a qualidade ao acaso –fale com nossos especialistas e leve sua engenharia ao próximo nível! WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- DEM aplicado a combustão em caldeiras
Uma caldeira tem como função principal produzir calor para aquecer água ou gerar vapor, que pode ser usado em diferentes processos industriais e na geração de energia. Esse equipamento pode operar com variados tipos de combustíveis, incluindo óleos combustíveis, gás natural, eletricidade e biomassa. No caso das caldeiras que utilizam biomassa, o calor é gerado pela queima de materiais de origem orgânica, como pedaços de madeira (cavacos), bagaço e palha de cana-de-açúcar, casca de arroz e outros resíduos provenientes da agricultura. Essa alternativa é considerada mais sustentável por aproveitar subprodutos que, considerando seu ciclo de vida, possuem emissão de carbono zerada ou muito baixa. Figura 1 – Biomassa Figura 2 – Princípio de funcionamento caldeira com biomassa Utilizar biomassa como fonte de energia traz benefícios ambientais significativos. Como é um recurso renovável, ela permite o aproveitamento de resíduos orgânicos, como restos agrícolas e florestais, e ajuda a diminuir a emissão de gases que provocam o efeito estufa — especialmente se comparada ao uso de combustíveis fósseis como o óleo diesel. Isso ocorre porque a biomassa participa de um ciclo de carbono mais equilibrado: as plantas absorvem dióxido de carbono (CO₂) da atmosfera enquanto crescem, e esse mesmo CO₂ é liberado novamente durante a queima. Além disso, por conter cadeias carbônicas mais curtas, sua combustão é mais eficiente, gerando menos poluentes como monóxido de carbono (CO), óxidos de nitrogênio (NOₓ) e hidrocarbonetos não queimados. Já os combustíveis fósseis, especialmente aqueles com cadeias mais longas de carbono (como C₈ ou C₁₂), apresentam maior dificuldade de quebra durante a queima, o que favorece a formação de espécies intermediárias e aumenta a emissão desses poluentes. Assim, o impacto líquido da biomassa tende a ser muito menor do que o das fontes fósseis. Figura 3 - Ciclo do carbono A eficiência da combustão da biomassa dentro das caldeiras depende diretamente da forma como o combustível se distribui sobre a grelha. Nos sistemas de grelha fixa, é comum que o material se acumule de maneira desigual, resultando em camadas parcialmente queimadas sobre outras ainda não queimadas. Isso cria áreas com combustão incompleta, comprometendo o rendimento térmico da caldeira. Além disso, este acúmulo de combustível não queimado pode causar acidentes devido a combustão espontânea que pode ocorrer ao ser retirada quente da caldeira e entrar novamente em contato com o oxigênio do ar. Algumas empresas relatam acidentes, por exemplo, ao soprar ar comprimido para desentupir a moega coletora de cinzas e com biomassa não queimada em altas temperaturas. Modelagem da combustão utilizando STAR-CCM+ Como já foi mostrado no post Simulação DEM aplicada a caldeiras , inicialmente foi avaliado apenas o escoamento da biomassa sobre a grelha, comparando os casos com grelha fixa e vibratória. Nesta etapa, foi incorporado ao modelo o processo de combustão. Utilizando o Simcenter STAR-CCM+ , é possível simular a combustão da biomassa, observando a redução de massa das partículas devido à volatilização do carbono durante a queima. O escoamento de ar primário, que atua como agente oxidante, também é considerado, permitindo avaliar sua influência na eficiência da combustão e no escoamento dos gases. Figura 4 – Discrete Element Method (DEM) Ao associar o modelo DEM com o modelo de combustão, é possível mapear a combustão da biomassa. Figura 5 - Modelo computacional da grelha e ambiente reacional O modelo de combustão Eddy Break-up do Simcenter STAR-CCM+ possibilita a simulação detalhada do processo de queima da biomassa. Ele acopla um domínio fluido, que representa o ar onde irão acontecer as reações, e o próprio DEM, além de outros modelos auxiliares como a turbulência e transferência de massa. Com isto, é possível observar a evolução do processo de combustão, avaliar o tempo necessário para a combustão completa, as temperaturas atingidas durante a reação, os produtos gerados (como CO₂, CO, H₂O, entre outros) e o fluxo de massa necessário para manter a queima em regime permanente. Figura 6 - Fração molar do ar, combustível, monóxido e dióxido de carbono durante a reação de combustão Com isso, é possível mapear todo o sistema térmico, identificando zonas de alta e baixa reatividade, regiões com combustão incompleta, áreas de acúmulo de material ou de deficiência de oxigênio, além de otimizar o fornecimento de ar e a geometria interna da caldeira. Vídeo 1 – Temperatura do ar e da partícula durante a queima da biomassa Essa integração entre o modelo de escoamento por DEM e o modelo de combustão permite um entendimento completo do comportamento da biomassa dentro do sistema, promovendo melhorias no desempenho térmico, maior eficiência na conversão de energia e redução nas emissões de poluentes. Vídeo 2 – Concentração de CO₂ e massa das partículas durante a combustão da biomassa O uso do Simcenter STAR-CCM+ na simulação do escoamento e da combustão da biomassa permite representar todo o processo térmico de forma precisa, desde a movimentação do combustível até sua queima completa. Essa abordagem possibilita identificar falhas operacionais, otimizar o projeto da caldeira e ajustar variáveis como geometria, vibração e fornecimento de ar. Com isso, é possível aumentar a eficiência energética, reduzir o consumo de combustível, minimizar emissões e resíduos, e tornar a planta mais segura, confiável e sustentável. A simulação se torna, assim, uma ferramenta essencial para a modernização e o aprimoramento de sistemas térmicos industriais. Referências: CARVALHO, Leonardo Lima de. Estudo da dinâmica de escoamento da unidade Microwave Paddle Dryer . 2021. Dissertação (Mestrado em Engenharia Química) – Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Uberlândia, 2021. Disponível em: https://repositorio.ufu.br/bitstream/123456789/34002/1/EstudoDinamicaEscoamento.pdf . OLIVEIRA, Luiz. Avaliação numérica do fenômeno de mistura em tambores rotatórios . ENEMP – Congresso Brasileiro de Sistemas Particulados, 2022. Quer entender como otimizar o desempenho da sua caldeira a biomassa e reduzir emissões com o uso de simulações avançadas? Agende agora uma reunião com a CAEXPERTS e descubra como aplicar o modelo de combustão acoplado ao DEM pode transformar sua operação em eficiência, segurança e sustentabilidade. WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- O que há de novo no Simcenter Systems Simulation 2504
O Simcenter Systems Simulation 2504 acaba de ser lançado. Ele contém muitos novos recursos interessantes que ajudarão seus usuários a se moverem mais rápido, lidar com mais complexidade, integrar melhor e explorar novas possibilidades. Atualização da plataforma A versão mais recente do Simcenter Amesim traz uma série de melhorias projetadas para acelerar fluxos de trabalho, simplificar simulações complexas e impulsionar a integração entre plataformas. De modelagem de radiação mais inteligente usando dados CFD incorporados a simulações mais rápidas, ícones de esboço redimensionáveis e ferramentas avançadas de validação de modelos, o Simcenter Amesim 2504 capacita engenheiros a construir, testar e otimizar com maior velocidade e confiança. Com suporte para FMI 3.0 e exportação de FMU sem licença, esta atualização torna a colaboração e a integração de sistemas mais fluidas do que nunca. Simcenter Amesim 2504 Melhorando a eficiência da modelagem – Ícones redimensionáveis no esboço do Simcenter Amesim O Simcenter Amesim simplifica a modelagem com ícones redimensionáveis em seu ambiente de esboço. Essa funcionalidade intuitiva de clicar e arrastar permite que os engenheiros enfatizem componentes e subsistemas importantes, dando-lhes o destaque que merecem. Com suporte a todos os componentes do Simcenter Amesim , incluindo supercomponentes e diagramas de estados, o redimensionamento mantém a integridade do projeto com proporções preservadas. Esse recurso aprimora o ambiente de esboço, permitindo apresentações dinâmicas e ajustes rápidos, como copiar/colar e redefinir escala. Com os ícones redimensionáveis do Simcenter Amesim , os engenheiros podem se concentrar eficientemente em elementos críticos, garantindo clareza ao modelar sistemas complexos. Acelerando modelos complexos – Aceleração de simulação no Simcenter Amesim À medida que os sistemas se tornam mais complexos, os modelos de simulação podem se tornar complexos e demorados. O Simcenter Amesim introduziu um novo algoritmo de tolerância adaptativa para aumentar a eficiência do solucionador. Essa melhoria reduz os tempos de processamento, permitindo que os engenheiros obtenham insights mais rápidos e tomem decisões ágeis. Em média, as simulações são executadas 19% mais rápido em comparação com as versões anteriores, ajudando a enfrentar os desafios impostos pela eletrificação em sistemas atuais e futuros. Com processamento mais rápido, o Simcenter Amesim permite que os engenheiros naveguem pela complexidade rapidamente, aumentando a produtividade e a inovação. Garantindo a validação do modelo – Gerenciador de execução de testes no Simcenter Amesim O Simcenter Amesim apresenta o gerenciador de execução de testes para agilizar a validação de modelos e desenvolvimentos de bibliotecas, juntamente com as atualizações do Simcenter Amesim . Esta ferramenta de testes não regressivos compara com eficiência os resultados da simulação com os casos de teste, garantindo a confiabilidade entre as atualizações. Os engenheiros se beneficiam de testes facilitados de novos desenvolvimentos, atualização contínua de versões de software e da capacidade de executar testes local e remotamente por meio de uma página web. O gerenciador de execução de testes mantém seus modelos validados e integrados, apoiando o desenvolvimento e a inovação contínuos com confiança. Melhorando a integração do modelo – Importação de co-simulação FMI 3.0 no Simcenter Amesim O Simcenter Amesim aprimora a integração de modelos por meio do suporte à importação de co-simulação do FMI 3.0. Esse recurso facilita a montagem de modelos heterogêneos usando a versão mais recente do FMI, oferecendo flexibilidade com elementos e parâmetros de tamanho fixo e ajustáveis. Com esse recurso, os engenheiros podem importar uma variedade de ECUs virtuais, incluindo aquelas com matrizes, e FMUs 3.0 de ferramentas como Simulink, Dymola e outras. Ele também permite a combinação de múltiplas FMUs 3.0 e 2.0, aprimorando a compatibilidade e a integração entre plataformas. Além disso, os engenheiros podem aplicar configurações de execução distintas para cada FMU importada, garantindo um controle preciso da simulação e uma colaboração eficaz. Simplificando o compartilhamento de modelos – Exportação de FMU sem licença no Simcenter Flomaster O Simcenter Flomaster apresenta uma nova opção de licença para exportar FMUs que opera sem a necessidade de uma conexão de servidor de licença, abordando o desafio de usar FMUs de solucionadores incorporados offline. Esse recurso facilita a implantação de FMUs em plataformas offline, otimizando os fluxos de trabalho quando os servidores de licenças estão inacessíveis. Além disso, permite o compartilhamento de modelos com parceiros externos, aprimorando os esforços de colaboração e integração entre diferentes equipes e organizações. Eletrificação À medida que a eletrificação remodela as indústrias, os engenheiros enfrentam desafios crescentes no desenvolvimento de baterias, desde testes de desempenho até gerenciamento térmico e análise de envelhecimento. A versão 2504 do Simcenter Systems eleva a simulação de baterias a um novo patamar, introduzindo novas ferramentas poderosas que tornam a modelagem mais intuitiva, precisa e alinhada aos testes do mundo real. De um ciclador de bateria aprimorado a modelos de envelhecimento mais inteligentes e design de pacotes guiados, descubra como o Simcenter ajuda você a construir baterias melhores com mais rapidez. Bateria Capacitando testes avançados de bateria – Ciclador de bateria aprimorado Avaliar o desempenho da bateria em múltiplos ciclos de carga e descarga pode ser tecnicamente desafiador e demorado. Com o lançamento do Simcenter Systems 2504 , apresentamos um ciclador de bateria aprimorado que torna esse processo significativamente mais fácil e realista. Em vez de configurar cada etapa manualmente, os engenheiros agora podem definir sequências de teste completas por meio de um arquivo de texto simples e legível. Cada teste pode incluir uma série de ações, desde ciclos básicos de carga e descarga até perfis de corrente personalizados, sequências em loop e condições específicas baseadas em eventos. É o mais próximo que você pode chegar de operar uma bancada de teste de bateria real — sem o hardware. Essa melhoria permite uma maneira muito mais flexível e intuitiva de executar avaliações de desempenho e rotinas de otimização, permitindo que os usuários simulem cenários complexos e tomem decisões de design mais inteligentes e mais rápidas. Inovação na análise da longevidade da bateria – Aprimoramento do modelo de envelhecimento eletroquímico Compreender o envelhecimento das baterias é vital para engenheiros, visto que diversos mecanismos de degradação podem afetar o desempenho e a vida útil. O Simcenter aborda esse desafio com seu modelo eletroquímico P2D de bateria aprimorado, que emprega recursos avançados de modelagem pseudo-2D e de partículas únicas. Este modelo inovador ajuda a identificar os principais mecanismos de degradação, como dissolução positiva do eletrodo, crescimento da camada SEI e revestimento de lítio. Além disso, facilita a avaliação automática da capacidade efetiva da bateria, aprimorando o design e o desempenho operacional. Com esta ferramenta, os engenheiros obtêm insights valiosos sobre o envelhecimento da bateria, o que os capacita a otimizar soluções de armazenamento de energia para maior confiabilidade e eficiência. Gestão energética e térmica Simplificando a modelagem complexa de radiação de cavidades – Troca de dados CFD incorporada O recurso CFD incorporado do Simcenter revoluciona a gestão do conforto térmico ao modelar a radiação de cavidades complexas usando recursos preditivos 3D em um modelo 1D. Essa abordagem extrai fatores de visualização do 3D e os traduz para o modelo de radiação 1D. Os engenheiros se beneficiam do cálculo automatizado de fatores 3D e da recuperação do Simcenter STAR-CCM+ diretamente em modelos 1D. Ao utilizar limites de invólucro 1D definidos pelo usuário, a solução fornece resolução automatizada e eficiente de fluxos radiativos finitos, aprimorando a precisão do projeto do sistema e o desempenho térmico. Simplificando a modelagem de baterias – Assistente de baterias Avaliar o desempenho da bateria juntamente com sua capacidade de resfriamento apresenta desafios significativos, principalmente devido à complexa interação da física envolvida. Para agilizar esse processo, o Simcenter apresenta o assistente de bateria, projetado para orientar engenheiros na geração de modelos multifísicos abrangentes. Esta ferramenta de fácil utilização oferece um fluxo de trabalho intuitivo que permite aos usuários definir sistemas complexos de baterias com controle visual sobre cada etapa. Ao permitir a geração simultânea de modelos de bateria e resfriamento — sejam eles diretos ou indiretos — o assistente de pacote de baterias aumenta a eficiência da modelagem. Uma abordagem de discretização personalizável facilita a personalização adicional, com foco em zonas específicas para gerar resultados precisos. O assistente também permite a geração de um modelo Simcenter Amesim aberto e facilmente personalizável. Com o assistente de bateria, os engenheiros podem navegar com confiança pelas complexidades do desempenho da bateria e do resfriamento, garantindo designs otimizados e melhor eficiência térmica. Integração de trocador de calor de microcanal – Assistente de trocador de calor A modelagem de trocadores de calor de microcanais costuma ser um desafio significativo devido às configurações detalhadas necessárias e à necessidade de flexibilidade para acomodar diversas configurações. Para facilitar esse processo complexo, o Simcenter apresenta o assistente de trocador de calor (HEXA), projetado para orientar os usuários na criação de modelos altamente detalhados e personalizáveis. A ferramenta HEXA oferece um fluxo de trabalho intuitivo que simplifica o projeto de trocadores de calor de microcanais, guiando os usuários passo a passo para reduzir a complexidade e os erros. Seu recurso intuitivo de geração de esboços permite a criação rápida de modelos sem comprometer as opções de personalização, permitindo que até mesmo leigos construam modelos abrangentes que atendam aos requisitos específicos do projeto. Além disso, o assistente permite adaptações para corresponder a configurações únicas e exóticas, garantindo que cada projeto se encaixe perfeitamente nas especificações do projeto. Ao utilizar o HEXA, os engenheiros podem aproveitar com eficiência a previsibilidade do modelo subjacente, permitindo fácil acesso aos principais parâmetros e aprimorando a precisão geral do projeto na modelagem de trocadores de calor. Hidrogênio À medida que o hidrogênio surge como um pilar fundamental na transição para a energia sustentável, os engenheiros precisam de ferramentas robustas para modelar, testar e otimizar todas as etapas do processo de produção e armazenamento. Com o Simcenter Systems 2504 , as capacidades do hidrogênio são expandidas por meio de um componente eletrolisador de água alcalina preditivo e uma biblioteca dedicada de armazenamento de fluidos para sistemas criogênicos. Essas inovações simplificam o projeto do sistema, aumentam a eficiência e permitem decisões baseadas em dados, capacitando os engenheiros a liderar o caminho na inovação do hidrogênio. Melhorando a eficiência da produção de hidrogênio – componente eletrolisador alcalino do Simcenter Engenheiros que trabalham na produção de hidrogênio enfrentam o desafio de avaliar o desempenho de eletrolisadores alcalinos sob condições operacionais variáveis e com dados limitados. O Simcenter aborda esse desafio com seu abrangente componente de eletrolisador alcalino, fornecendo uma solução que aumenta significativamente a eficiência na produção de hidrogênio verde. Este componente permite que engenheiros explorem rapidamente o potencial de eletrolisadores alcalinos em diferentes condições, utilizando um conjunto limitado de dados experimentais para configuração de parâmetros. A integração deste componente preditivo de AWE ao pacote do Simcenter agiliza o processo de produção de hidrogênio, permitindo um rápido equilíbrio entre o dimensionamento da planta e o projeto de controle. Com esses recursos, os engenheiros podem otimizar os sistemas de hidrogênio de forma mais eficaz, apoiando a transição para soluções de energia sustentáveis. Revolucionando o design de armazenamento criogênico – biblioteca de armazenamento de fluidos do Simcenter e demonstração de dormência LH₂ Em setores como o aeroespacial e o automotivo, o armazenamento eficiente de fluidos criogênicos é essencial. Para auxiliar os engenheiros, o Simcenter apresenta sua inovadora biblioteca de armazenamento de fluidos, juntamente com a demonstração de dormência do hidrogênio líquido. Esta biblioteca oferece novos componentes personalizados para modelar a autopressurização e a evaporação em tanques criogênicos. A demonstração de dormência do LH₂ oferece aos engenheiros uma maneira rápida de aproveitar esses componentes, facilitando a modelagem do sistema em estreita sintonia com os dados experimentais. Os engenheiros agora podem estimar com precisão o acúmulo de pressão e as variações de temperatura devido à entrada de calor. Essa capacidade se mostra inestimável, permitindo o projeto e a otimização precisos de sistemas de armazenamento criogênico. Ao integrar essas novas ferramentas, o Simcenter auxilia engenheiros a superar desafios complexos, impulsionando avanços no armazenamento criogênico em diversos setores críticos. Engenharia de chassis Simplifique seu fluxo de trabalho com modelos de suspensão MBS com capacidade de processamento em tempo real Para engenheiros que trabalham com dinâmica veicular, a transição de modelos complexos de suspensão de softwares 3D tradicionais para simulações em tempo real pode ser uma tarefa desafiadora. O Simcenter Amesim aborda esse desafio com sua nova oferta: modelos de suspensão MBS com capacidade de tempo de vedação, suportados por uma interface gráfica de usuário (GUI) dedicada. Esta solução inovadora simplifica o processo de migração, fornecendo modelos predefinidos de sistemas de suspensão que integram perfeitamente dados CAD 3D ao Simcenter Amesim . Os engenheiros agora podem preservar a integridade de seus projetos iniciais e, ao mesmo tempo, adaptá-los às necessidades de simulação em tempo real, garantindo precisão e eficiência na dinâmica do veículo. Os modelos prontos para uso eliminam a demorada tarefa de construir modelos do zero, permitindo que os engenheiros se concentrem na otimização do design e da funcionalidade. Com os modelos de suspensão MBS com capacidade de processamento em tempo real, o Simcenter Amesim capacita os engenheiros a aprimorar sua experiência de modelagem, permitindo transições mais suaves e confiáveis para simulações dinâmicas em dinâmica de veículos. Habilitando a modelagem precisa de caminhões EV e H₂ – Aprimoramento do banco de dados de veículos Em resposta à evolução do cenário de transporte, o Simcenter apresenta seus bancos de dados aprimorados de modelos de veículos para atender à necessidade dos engenheiros de modelagem precisa de novos veículos elétricos e caminhões movidos a hidrogênio. Ao utilizar motores de partida correlacionados e integrar dados de teste abrangentes, os engenheiros obtêm acesso a modelos prontos para uso de veículos como o Hyundai Ioniq 6, o BYD Atto 3 e diversos caminhões movidos a hidrogênio. Esse avanço permite uma fidelidade de simulação excepcional, capacitando engenheiros a avaliar e otimizar com confiança soluções veiculares de última geração. Com o banco de dados aprimorado do Simcenter, as complexidades das novas tecnologias veiculares são exploradas com mais eficiência, expandindo os limites da inovação em transporte sustentável. Esses modelos validados fornecem aos engenheiros a precisão necessária para desenvolver soluções de transporte mais eficientes e confiáveis, levando a um futuro mais verde. Harmonizando soluções de projeto de chassis – Nova estrutura para modelagem de pneus Na busca por avaliar projetos de chassis elétricos em uma variedade de cenários de autonomia, conforto e dirigibilidade, engenheiros enfrentaram o desafio de gerenciar diversos modelos de pneus em soluções de dinâmica veicular. O Simcenter atende a essa necessidade com sua nova estrutura para modelagem de pneus. Essa abordagem inovadora oferece uma estrutura simplificada e harmonizada, permitindo integração e consistência perfeitas em todos os modelos de pneus. O verdadeiro valor desta estrutura reside na sua contribuição para a avaliação abrangente do projeto de chassis. Com compatibilidade entre diversos formatos de descrição de estradas e modulação dinâmica da aderência, os engenheiros podem facilmente integrar o software de modelagem de pneus a todo o processo de projeto. Isso garante que todos os aspetos do desempenho do pneu sejam representados com precisão, fornecendo aos engenheiros as ferramentas necessárias para otimizar o projeto de veículos elétricos e inovar além dos limites. A nova versão do Simcenter Systems Simulation 2504 chegou repleta de inovações que aceleram simulações, integram plataformas e ampliam o poder de modelagem em áreas como baterias, hidrogênio, conforto térmico e muito mais. Quer entender como essas melhorias podem transformar seus projetos e impulsionar sua engenharia? Agende agora uma reunião com os especialistas da CAEXPERTS e descubra, na prática, como aproveitar ao máximo essas novas possibilidades! WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- Interação fluido-estrutura (FSI) com contato mecânico em simulação
Muitas aplicações, como vedações, juntas, válvulas e bicos, implicam a interação fluido-estrutura (FSI) em conjunto com o contato mecânico entre corpos sólidos. Devido à natureza altamente não linear dos contatos, muitas vezes tendemos a negligenciar a respectiva modelagem de contato, especialmente em aplicações multifísicas, como a FSI. Para uma série de aplicações, ser capaz de modelar o contato mecânico junto com a interação fluido-estrutura é até mesmo o principal facilitador para fazer uma simulação física significativa. Resolva aplicações multifísicas acopladas desafiadoras de maneira direta Sensor e bocal da câmera, um design inteligente Para que câmeras e sensores produzam uma imagem ou sinal nítido, eles exigem uma lente limpa. Como muitos dos instalados em automóveis são expostos à sujeira e detritos, a limpeza regular é essencial. Isso geralmente é feito com a ajuda de um spray líquido de um bico. Você vê abaixo um design simples, mas inteligente, de um sensor e bico de câmera. Ele consiste em apenas três partes: um conector, uma luva de borracha e um bico. Projeto de um sensor e bico de limpeza de câmera Modelagem de contatos mecânicos entre corpos sólidos e elásticos, introdução de um novo modelo A luva de borracha veda o conjunto e atua como uma válvula. Para ilustrar isso, foi feito um modelo 3D no Simcenter STAR-CCM+ . O conector, assim como o bico, são assumidos como rígidos, enquanto a luva é modelada como um corpo elástico. O contato entre luva e conector, assim como luva e bico está incluído. Isso é possível graças à capacidade de agora modelar o contato mecânico com quaisquer peças de geometria tesselada. A animação abaixo mostra o processo de montagem das três peças: Primeiramente, o conector é empurrado na manga de borracha. Em seguida, a luva de borracha é apertada entre o bico e o conector, selando assim o conjunto. Contato mecânico modelado com peças de geometria tesselada: exemplo de processo de montagem Uma vez instalada, a luva fecha dois furos radiais no conector (veja a imagem à esquerda). Assim que o sistema de limpeza é ativado, uma bomba é ligada. A bomba pressuriza o líquido, e a luva se deforma por causa da pressão do líquido. Isso abre um caminho de fluxo abaixo da luva (conforme mostrado à direita). Um modelo inspirado na válvula de bicicleta Dunlop A válvula de bicicleta desenvolvida pela Dunlop 1891 funciona exatamente assim. Na imagem abaixo, você pode ver os furos radiais no corpo da válvula cobertos por uma fina luva de borracha. Válvula de bicicleta – Desenvolvida pela Dunlop em 1891 (source: https://en.wikipedia.org/wiki/Dunlop_valve ) Simulação FSI com contato mecânico – um exemplo de aplicação A abordagem pragmática O modelo do sensor e do bico da câmera provou ser muito útil para ilustrar como o design funciona. Mas e quanto ao valor de engenharia? Por exemplo, quanto líquido sairá do bico por unidade de tempo considerando que a bomba do sistema de limpeza pode gerar um diferencial de pressão de 1,0 bar? Vamos abordar essa questão de forma pragmática. Primeiramente, é aplicada uma carga de pressão de 1,0 bar na superfície interna da luva, e a deformação é calculada. Em seguida, o caminho do fluxo é extraído considerando a manga deformada. Em uma simulação de fluxo subsequente, um diferencial de pressão de 1,0 bar é aplicado, e o campo de fluxo é calculado. O vídeo abaixo mostra os resultados dessa abordagem: a vazão mássica média é de cerca de 1,93 g/s. Exemplo 1: a abordagem pragmática Simulação FSI com contato mecânico A abordagem acima é problemática e pode levar a decisões de engenharia erradas. Por quê? Na realidade, a deformação da luva impacta o fluxo, enquanto o fluxo impacta a deformação da luva. Para aumentar a precisão e o valor de engenharia do modelo, deve-se levar em conta o acoplamento bidirecional entre fluido e estrutura. Como o modelo de fluxo e o modelo de estrutura são parte da mesma simulação Simcenter STAR-CCM+ , isso é direto e nem requer co-simulação. O vídeo abaixo mostra os resultados usando simulação FSI com contato mecânico. A pressão na entrada está sendo aumentada de 0,0 bar para 1,0 bar durante um período de 1,0 s, depois disso a pressão é mantida constante em 1,0 bar. A taxa média de fluxo de massa entre 1,0 s e 1,5 s é de cerca de 1,76 g/s. Exemplo 2: simulação FSI acoplada bidirecional com contato mecânico O modelo acoplado bidirecional revela quão significativo é o impacto da suposição de modelagem por trás da abordagem pragmática. A deformação da luva de borracha é muito diferente, assim como o campo de fluxo. Não apenas isso, a abordagem pragmática também superestima a taxa de fluxo de massa em cerca de 10%. Algo particularmente fascinante é observar como o fluxo de alta velocidade sob a luva realmente suga a ponta da luva radialmente para dentro. Claro, esse é um efeito que não pode ser capturado na abordagem pragmática. Simulação FSI com contato mecânico, precisão imbatível Modelagem de um bico de limpeza de sensor/câmera. Simulação FSI com contato mecânico A aplicação do sensor e do bico da câmera demonstra como o novo recurso de modelagem de contato agrega valor ao Simcenter STAR-CCM+ de três maneiras diferentes. Primeiro, ele permite que você calcule como a luva de borracha se deforma durante o processo de montagem. Isso é útil, mas, para ser justo, você também pode fazer isso com outros produtos. Segundo, o fato de o modelo fazer parte do Simcenter STAR-CCM+ significa que você o usou de forma multidisciplinar. Isso foi demonstrado com a abordagem pragmática. Uma carga de pressão de 1,0 bar foi aplicada para calcular a deformação da luva, ou mais especificamente, para calcular o caminho do fluxo. Em seguida, a solução de fluxo foi calculada. Aqui, o fato de o modelo de estrutura e o modelo de fluxo fazerem parte da mesma simulação torna esse fluxo de trabalho direto. Por exemplo, não há necessidade de exportar e importar nenhum dado. Terceiro, como o modelo de fluxo e o modelo de estrutura são parte da mesma simulação, você pode modelar com precisão o acoplamento bidirecional entre fluido e estrutura sem a necessidade de qualquer co-simulação. Isso é realmente o que torna esse recurso tão empolgante. É o valor agregado que ele fornece por ser parte do Simcenter STAR-CCM+ e o fato de que ele permite que você resolva aplicações multifísicas acopladas desafiadoras de maneira direta. Há um futuro brilhante pela frente para todas essas câmeras de veículos autônomos por aí! E da próxima vez que você encher aquele pneu furado, você pensará em FSI com contatos mecânicos. Agende uma reunião com a CAEXPERTS e veja como a modelagem avançada de contato mecânico e FSI pode revolucionar seus projetos. Nossa equipe está pronta para ajudá-lo a superar desafios complexos com precisão e eficiência. Vamos inovar juntos! WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- Case: Bronswerk Heat Transfer usa Simcenter FLOEFD para localizar perdas de pressão
Grande produtor e projetista de trocadores de calor aumenta eficiência de ventiladores de resfriamento com solução da Siemens Desafios Aumentar a eficiência do ventilador de refrigeração em grandes plantas industriais Diminuir o ruído do ventilador de refrigeração em grandes plantas industriais Localizar áreas de perda de pressão Projetar um sistema de refrigeração completamente novo com protótipos mínimos Resultados Desenvolvimento de nova solução de resfriamento Perdas de pressão localizadas Quebrou recordes da indústria em eficiência energética, redução de ruído e economia de peso "Mais importante ainda, o Simcenter FLOEFD nos deu a oportunidade de realmente entender a aerodinâmica dos coolers refrigerados a ar pela primeira vez, porque o fluxo e a aerodinâmica são mais do que apenas um fluxo através da entrada e do próprio ventilador." Guus Bertels, Diretor Associado de Design e Análise Avançada, Bronswerk Heat Transfer BV Fundada em 1940, a Bronswerk Heat Transfer BV é especializada no projeto e na produção de trocadores de calor e condensadores, resfriadores a ar e sistemas completos. Com foco em soluções inovadoras e de alta qualidade para problemas com trocadores de calor, a Bronswerk Heat Transfer BV possui escritórios e unidades na Holanda, República Tcheca e Rússia, empregando aproximadamente 300 pessoas. A Bronswerk Heat Transfer BV projeta, produz e fornece sistemas industriais de trocadores de calor (casco e tubo), equipamentos de refrigeração, condensadores de estrutura tipo A, resfriadores a ar (ACC) e ventiladores. Além disso, a Bronswerk Heat Transfer BV fornece e presta serviços de manutenção para sistemas de refrigeração de processos em todo o mundo. A Bronswerk Heat Transfer BV foi recentemente incumbida de aumentar a eficiência dos ventiladores de resfriamento em grandes plantas industriais, reduzindo simultaneamente o ruído emitido por eles. Nessas instalações, ventiladores de até 10 metros movimentam o ar através de feixes de serpentinas dentro de um sistema de resfriamento de gás ou campo de petróleo. Dezenas, até centenas, de sistemas de ventiladores podem ser necessários para resfriar o gás ou o óleo, juntamente com incontáveis megawatts de energia elétrica para operar esses ventiladores. O ruído dos ventiladores é tão importante quanto as questões de custo quando se trata de regulamentações, visto que grandes plantas industriais estão sujeitas a rigorosas regulamentações de ruído. Os ventiladores tradicionalmente usados nesse ambiente oferecem uma eficiência máxima de cerca de 50%. O que aconteceria se essa eficiência pudesse ser aumentada para 80%? Ou até mais? Menos ventiladores poderiam fazer o mesmo trabalho com menos energia, menos ruído e custos operacionais mais baixos. Com essa visão, a equipe de engenharia de projeto da Bronswerk Heat Transfer BV se propôs a criar uma nova geração de sistemas de resfriamento refrigerados a ar que resolveriam problemas antigos. Escolhendo Simcenter FLOEFD Os engenheiros de projeto da Bronswerk Heat Transfer BV selecionaram o software Simcenter™ FLOEFD para desenvolver um ventilador de resfriamento para plantas industriais de petróleo e gás que é mais eficiente em termos de energia, mais silencioso e mais leve do que seus antecessores. O Simcenter FLOEFD permite análises e validações impossíveis apenas com medições físicas. O Simcenter FLOEFD é um conjunto comprovado de ferramentas de dinâmica de fluidos computacional (CFD) 3D simultâneas para análise e validação de atualizações de projeto. Ele faz parte da plataforma de negócios Siemens Xcelerator de software, hardware e serviços. Os engenheiros de projeto da Bronswerk Heat Transfer BV utilizaram ferramentas de CFD e medições físicas para caracterizar o comportamento, particularmente a aerodinâmica, de grandes sistemas de refrigeração a ar. Eles descobriram que a aplicação simultânea de CFD frequentemente pode produzir dados que seriam impossíveis de obter com medições devido a restrições físicas, ao princípio de Heisenberg e outros fatores. Quebrando recordes da indústria A nova solução de resfriamento da Bronswerk Heat Transfer BV , desenvolvida pelos engenheiros de projeto, inclui ventiladores e carcaças que se inspiram em turbinas a gás, asas de aeronaves e uma generosa dose de criatividade local. O Simcenter FLOEFD validou com rapidez e precisão a praticidade desses toques criativos. Além do resultado puramente quantitativo, as simulações CFD ajudaram a Bronswerk Heat Transfer BV a explorar ideias ousadas sem comprometer o orçamento e o cronograma do projeto. “O Simcenter FLOEFD foi crucial porque eu não poderia provar a mim mesmo ou a outros que esse design poderia funcionar, para que pudéssemos começar a fabricar protótipos” Guus Bertels, diretor associado de design e análise avançados da Bronswerk Heat Transfer BV. As medições físicas foram essenciais para o sucesso do projeto, mas não conseguiram produzir os dados necessários em todos os casos. Com a simulação, os engenheiros de projeto da Bronswserk Heat Transfer BV conseguiram analisar as distribuições de pressão estática através de um campo de fluxo e obter informações sobre a pressão total, que é uma medida direta da entropia no sistema. Uma perda na pressão total é uma perda de energia, e o Simcenter FLOEFD forneceu uma imagem clara de onde estavam as perdas. Os sistemas de resfriamento Whizz-Wheel® da Bronswerk Heat Transfer BV , que comprovadamente aumentam o desempenho em até 30% , reduzem o espaço do lote e diminuem o ruído e o consumo de energia, estão agora quebrando todos os recordes do setor em eficiência energética, redução de ruído e economia de peso. “Mais importante ainda, o Simcenter FLOEFD nos deu a oportunidade de realmente entender a aerodinâmica dos coolers refrigerados a ar pela primeira vez, porque o fluxo e a aerodinâmica são mais do que apenas um fluxo através da entrada e do próprio ventilador”, diz Bertels. Quer alcançar níveis inéditos de eficiência energética e redução de ruído nos seus sistemas de resfriamento industrial, como fez a Bronswerk com o Simcenter FLOEFD ? Agende uma reunião com os especialistas da CAEXPERTS e descubra como podemos transformar seus desafios em inovação e performance de alto impacto! WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- Case: Melhoria de desempenho do elevador de tesoura via simulação
Haulotte usa Simcenter para aumentar a altura máxima de trabalho do elevador Pulseo em 25% e a capacidade de carga em 50% Desafios Tornar os canteiros de obras ecologicamente corretos Definir uma arquitetura de e-machine ideal, garantindo a estabilidade da máquina Criar um protótipo certo na primeira vez Resultados Desempenho aprimorado durante a transição de um motor ICE para um motor elétrico Aumento da altura máxima de trabalho em 25% e da capacidade de carga em 50% Redução do número de protótipos e do tempo gasto em campanhas de teste Alinhado com os regulamentos de segurança e emissões Com o Simcenter, passamos de um motor a combustão de 23 kW para um motor elétrico de 12 kW, ao mesmo tempo em que melhoramos o desempenho geral do elevador de tesoura. Arnaud Chaigne, Chefe da Divisão de Simulação e Validação Digital, Haulotte A segurança é primordial Dê uma olhada em qualquer canteiro de obras e você verá muitos elevadores de tesoura sendo usados para uma variedade de tarefas. De trabalhos de pintura interna a reformas externas, esse tipo de elevador de construção com sua plataforma de elevação precisa ter um bom desempenho em uma variedade de condições desafiadoras. Projetos ao ar livre podem ser especialmente difíceis para esse tipo de equipamento. O solo pode ser lamacento, irregular e difícil de navegar. Declives íngremes e lamacentos exigem bom desempenho de tração para fazer o trabalho. Outro fator-chave são as regulamentações de ruído e emissão. Os elevadores não podem emitir gases de escape e não podem exceder certos níveis de decibéis para a segurança do operador e da equipe geral, especialmente em ambientes fechados. Isso significa que os engenheiros precisam reduzir o ruído geral gerado pelo motor e pelos sistemas de atuação, bem como atender aos padrões cada vez mais rigorosos aplicados aos motores de combustão interna (ICEs). À medida que mais áreas urbanas adotam zonas de baixa emissão, os fabricantes estão sendo forçados a acelerar a inovação e produzir equipamentos de energia alternativa. Em muitos casos, a eletricidade é o caminho mais viável a seguir. Por fim, a segurança é primordial quando se trata de equipamentos de construção e elevadores em geral. Essas máquinas são todas sobre trabalhar bem acima do solo. Isso significa que a estabilidade é a maior prioridade para fabricantes e usuários finais. Conhece alguém que tenha uma plataforma elevatória na garagem? Como outros aspectos da indústria da construção, 80% dos clientes de elevação final não são usuários finais, mas empresas de aluguel de equipamentos. As empresas de aluguel precisam oferecer máquinas versáteis e de alto desempenho aos seus clientes. Os clientes não querem alugar máquinas diferentes para o mesmo local. Oferecer um versátil de alto desempenho é um grande trunfo quando se trata de gerenciar uma frota de aluguel. Entre na gama Pulseo Para preencher essa lacuna no mercado, a Haulotte , uma das principais fabricantes e fornecedoras de equipamentos de elevação do mundo, sediada em Lorette, França, desenvolveu a Pulseo , uma linha de elevadores elétricos de tesoura de última geração para todos os terrenos. Adequadas para trabalho interno e externo, as plataformas Pulseo totalmente elétricas oferecem desempenho superior em comparação aos modelos anteriores com motor de combustão. Para desenvolver esses novos modelos, Arnaud Chaigne, chefe da divisão de simulação e validação digital da Haulotte , e sua equipe de engenheiros usaram simulação para estudar possibilidades de design e prever o desempenho da máquina. “A simulação nos permitiu avaliar a viabilidade de diferentes cenários de inovação, levando em consideração o impacto em vários sistemas, como hidráulico, elétrico e controles, bem como a estabilidade da máquina e a segurança do operador”, diz Chaigne. Avaliação de arquitetura de design usando Simcenter Amesim Ferramentas de simulação de escolha A Haulotte usa ferramentas de software Simcenter™ para simulação mecânica e de sistema. O Simcenter faz parte da plataforma de negócios Siemens Xcelerator de software, hardware e serviços. Usando essas ferramentas de simulação, os engenheiros da Haulotte desenvolveram uma linha de elevadores de tesoura com motor elétrico de 12 quilowatts (kW) prontos para o mercado. Os novos elevadores apresentaram melhor desempenho em comparação ao modelo anterior, que apresentava um motor de combustão interna (ICE) de 23 kW. Os novos elevadores de tesoura elétricos não são apenas livres de poluição e silenciosos, mas também apresentam melhor desempenho geral, incluindo uma altura máxima de acionamento de trabalho de 15 metros (m) em vez de 12 m e uma capacidade de carga de 750 quilogramas (kg) em vez de 500 kg. Para determinar a arquitetura ideal para futuras plataformas elevatórias de tesoura Pulseo todo-terreno, Chaigne usou o software Simcenter Amesim™ para simulação do sistema. Uma das partes mais difíceis da tarefa foi otimizar o desempenho do motor elétrico. Ao contrário dos ICEs convencionais, para obter a potência necessária do motor elétrico, a equipe teve que lidar com muito mais problemas e restrições de design. Para começar, Chaigne identificou as perdas de energia em todos os níveis: do motor até toda a estrutura, incluindo a distribuição hidráulica. “Começamos modelando o sistema térmico existente para identificar as partes que mais consomem energia (mapeamento de perda de energia)”, diz Chaigne. “Ao fazer isso, conseguimos definir uma nova arquitetura mais adequada a uma máquina totalmente elétrica, onde todo o consumo de energia conta.” Definindo uma arquitetura de sistema ideal Como parte do projeto para definir a arquitetura ideal, a equipe trabalhou no dimensionamento da bateria do sistema elétrico. Como Chaigne explica, “Para dimensionar a bateria adequadamente, tivemos que estudar duas áreas principais: por um lado, a quantidade total de energia necessária para as necessidades operacionais do dia a dia e, por outro lado, as altas demandas de energia durante as fases transitórias. O risco é superdimensionar o design para se adaptar a esses picos de energia. Portanto, trabalhamos na modelagem da lei de controle para limitar esses picos.” Durante as fases de análise, Chaigne e sua equipe observaram que os picos ocorreram logo no início da elevação, quando os atuadores iniciaram o movimento. “Para otimizar o tamanho da bateria, tivemos que desenvolver leis de controle para suavizar os picos de potência, ao mesmo tempo em que oferecíamos um tempo de elevação similar”, diz Chaigne. “Isso resultou em um nível de potência constante durante todo o movimento de elevação.” Ferramenta de fluxo de trabalho personalizada e orientada a processos usando o software NX™ Open, no Simcenter 3D Simulação da estabilidade da máquina em operação, usando o Simcenter 3D Motion Usando o Simcenter 3D Motion para obter estabilidade Regulamentos em vários países estipulam que elevadores devem permanecer estáveis, quer estejam se movendo para uma posição no local de trabalho ou parados; por exemplo, com o operador ou trabalhadores na plataforma. “Para melhorar a produtividade com nossa nova plataforma elevatória tipo tesoura, foi necessário estudar sua estabilidade em trânsito”, diz Chaigne. “Quando a máquina está se movendo e sendo implantada, você precisa estudar o comportamento do eixo oscilante para garantir a estabilidade geral do veículo.” Para poder antecipar todos os cenários possíveis, Chaigne e sua equipe usaram o software Simcenter 3D Motion para estudar o comportamento dinâmico do elevador de tesoura. “Usamos a simulação dinâmica multicorpo do Simcenter para dimensionar os elevadores de tesoura para garantir a estabilidade”, diz Chaigne. “Isso tornou possível encontrar o melhor compromisso entre desempenho e peso da máquina e economizar tempo durante o desenvolvimento.” Trabalho externo em andamento com o Pulseo Democratizando a simulação “Como especialista em simulação, sou responsável por garantir que nossas ferramentas de simulação sejam acessíveis”, afirma Chaigne. “As possibilidades de personalização no Simcenter 3D via NX Open tornaram possível integrar nossas regras de negócios e normas regulatórias para acelerar o processo de cálculo e reduzir o risco de erro.” Quando o escritório de design Haulotte realiza as várias análises de estabilidade, as normas padrão conduzem o processo. Um dos problemas é que os padrões variam de região para região e os requisitos podem cobrir alguns fatores variáveis: desde os ambientais, como a força do vento, até os iniciados pelo homem, como o impacto do operador ou o manuseio do equipamento, como a posição da carga e os ângulos de trabalho. “Paralelamente ao gerenciamento dos parâmetros padrões, tentamos tornar nossos modelos criados no escritório de design o mais preditivos possível”, explica Chaigne. “Isso significa levar em conta parâmetros que influenciam a estabilidade, como o comportamento do pneu, a rigidez real e sua distribuição de peso. Após o modelo ter sido definido, precisamos verificar a estabilidade de acordo com as diferentes configurações padrões; esta etapa pode ser relativamente longa e tediosa.” Economizando tempo e eliminando trabalho tedioso Para economizar tempo e melhorar o processo de análise dos cálculos de estabilidade, a equipe desenvolveu uma ferramenta de fluxo de trabalho personalizada e orientada ao processo usando o software NX™ Open , um módulo de automação de interface de programação de aplicativos (API) para o Simcenter 3D . “Em termos concretos, o NX Open nos permite automatizar a entrada de dados, levando em conta as várias normas”, diz Chaigne. “Durante o pós-processamento, ele fornece informações claras sobre estabilidade. Isso permite que não especialistas usem modelos Simcenter 3D Motion mais complexos.” A co-simulação melhora o desempenho Ao trabalhar na série elétrica Pulseo , a equipe de engenharia co-simula modelos 3D do Simcenter usados para análise de estrutura e estabilidade com modelos de simulação de sistema Simcenter Amesim usados para análise de energia e dimensionamento de bateria. Chaigne explica: “Para máquinas elétricas, o consumo de energia é extremamente importante. Usar o Simcenter 3D Motion nos permite modelar as forças nos atuadores hidráulicos levando em conta a cinemática, distribuição de massa, atrito e efeitos dinâmicos. Temos uma percepção real dos detalhes do nível de pressão e, portanto, da energia necessária para esses atuadores.” A equipe trabalha com dois tipos de processos de co-simulação. “No primeiro caso, os dois programas de software operam simultaneamente e trocam informações para convergir em direção a uma solução comum”, diz Chaigne. “No segundo caso, usamos o Simcenter 3D Motion para gerar tabelas de força de acordo com a posição do cilindro e então usamos essas informações no Simcenter Amesim .” Como as plataformas elevatórias tipo tesoura operam principalmente hidraulicamente usando vários atuadores, a distribuição de tensões pela estrutura varia de acordo com o equilíbrio de pressão nos atuadores hidráulicos. Chaigne diz: “A co-simulação nos permite analisar as tensões em condições normais e durante falhas; por exemplo, uma ruptura de mangueira. Podemos ver como as transferências de carga ocorrem e o impacto na pressão do cilindro hidráulico.” Usando simulação para reduzir campanhas de testes físicos “Cálculos e simulações fazem parte do nosso processo de validação teórica para garantir que nosso design tenha atingido um certo nível de maturidade antes de fabricar o primeiro protótipo”, diz Chaigne. “No entanto, a fase de teste continua essencial. A simulação nos ajuda a identificar os casos mais críticos em termos de estabilidade, avaliando parâmetros como posição da máquina, cargas e forças.” Os casos críticos identificados são então verificados durante os testes. “Verificamos se os resultados dos testes correspondem à simulação”, confirma Chaigne. “Este loop de análise de teste-simulação é necessário para melhorar nossos modelos. Usar modelos de simulação limita protótipos e, portanto, reduz o tempo que gastamos nas campanhas de teste.” Usando simulação para entender o comportamento de desempenho “A simulação nos ajuda a definir a arquitetura geral do sistema, mas a usamos durante diferentes fases de desenvolvimento, como para solucionar problemas que ocorreram durante os testes. Certamente, a simulação fornece uma visão mais profunda do comportamento de desempenho indesejado e também das causas”, explica Chaigne. “Para reproduzir o desempenho com precisão, você precisa modelar diferentes fenômenos físicos. Isso inclui identificar parâmetros influentes e avaliar alternativas imediatamente. Trabalhando assim, somos capazes de atingir a fase de prototipagem com uma arquitetura mais madura e até definitiva.” De acordo com Chaigne, dentro de um escritório de design, é essencial não isolar a equipe de análise de simulação da equipe de teste de protótipo. Os loops de simulação e teste devem ser integrados em um processo colaborativo para permitir que os problemas detectados durante o teste sejam resolvidos o mais rápido possível usando simulação. Trabalho interno em andamento com o Pulseo Desempenho superior e segurança ideal Usar as ferramentas de simulação do Simcenter foi um fator-chave de sucesso no design e desenvolvimento dos novos elevadores elétricos de tesoura Pulseo todo-terreno da Haulotte . A equipe conseguiu cumprir todos os padrões de segurança de estabilidade operacional, bem como vários requisitos relacionados a emissões de ruído e poluição do ar. Graças aos recursos de simulação do Simcenter, a equipe criou um design ideal que apresentou um desempenho superior em comparação ao modelo anterior com um ICE. “Com o Simcenter, passamos de um motor a combustão de 23 kW para um motor elétrico de 12 kW, ao mesmo tempo em que melhoramos o desempenho geral do elevador de tesoura. A altura máxima de trabalho aumentou 25% de 12 m para 15 m e a capacidade de carga aumentou 50% de 500 kg para 750 kg”, conclui Chaigne. Quer impulsionar a inovação e a eficiência dos seus projetos? A CAEXPERTS pode ajudar sua empresa a alcançar novos patamares com soluções avançadas de simulação. Agende uma reunião agora e descubra como o portfólio SImcenter pode otimizar o seu desempenho e reduzir custos! WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br
- Como a Simulação CFD pode Melhorar e Maximizar o Projeto e Desempenho de Trocadores de Calor
Os trocadores de calor são equipamentos essenciais em diversos processos industriais. Seja na geração de energia, na indústria química, petroquímica ou em sistemas HVAC, eles são muito importantes para garantir o controle térmico, a eficiência energética e a adequada transferência de calor das linhas de processo. A performance desses equipamentos tem impacto direto no consumo de energia, nos custos operacionais e até na pegada ambiental de um processo industrial. Apesar de sua importância, projetar trocadores de calor eficientes e compactos ainda é um desafio. Isso porque os fenômenos envolvidos — como a transferência de calor, os gradientes de temperatura, os padrões de escoamento turbulento e a formação de zonas mortas ou recirculações — são altamente complexos e interdependentes. Pequenas mudanças geométricas podem ter efeitos significativos sobre o desempenho térmico e hidrodinâmico do sistema. Tradicionalmente, muitos desses projetos são baseados em correlações empíricas ou métodos semi-analíticos, que embora úteis, nem sempre conseguem captar toda a complexidade envolvida no escoamento interno de trocadores modernos, especialmente aqueles altamente compactos ou com geometrias inovadoras. É exatamente nesse ponto que a simulação CFD (Dinâmica dos Fluidos Computacional) vem se destacando, possibilitando criar modelos tridimensionais que revelam em detalhes o comportamento do fluido, as trocas de calor e os gradientes de pressão — tudo isso com base em condições reais de operação. Desafios e Soluções Projetar um trocador de calor eficiente não se resume apenas a garantir que a troca térmica ocorra — o verdadeiro desafio está em equilibrar desempenho térmico, perda de carga e viabilidade de fabricação . Um projeto que transfere bem o calor, mas exige bombas mais potentes por causa da alta perda de carga do escoamento, pode inviabilizar o sistema em termos de custo operacional. Da mesma forma, soluções altamente eficientes do ponto de vista térmico podem ser difíceis ou caras de produzir. Outro problema recorrente é o dimensionamento incorreto de defletores, aletas e canais , que pode gerar zonas de recirculação ou mortas no fluxo, prejudicando a uniformidade da troca térmica e criando hotspots. Esses detalhes, muitas vezes invisíveis em análises tradicionais, afetam diretamente a durabilidade e o desempenho do equipamento. É aí que a simulação CFD com o STAR-CCM+ se torna decisiva. Com ela, é possível visualizar o escoamento em 3D , observar os perfis de temperatura e pressão, e prever exatamente onde ocorrem perdas ou ineficiências. O engenheiro consegue testar diferentes geometrias, modificar ângulos de entrada, espaçamentos e até combinar defletores e aletas para maximizar a turbulência onde ela é desejada — tudo isso antes da fabricação de qualquer protótipo físico . Além disso, os resultados da simulação podem ser utilizados para validar projetos conforme normas técnicas , como as especificações da ASME, TEMA ou API 660 , garantindo que o equipamento atenda aos critérios de segurança, confiabilidade e desempenho exigidos pelo setor. Isso não só acelera o processo de desenvolvimento, como reduz custos com retrabalho, aumenta a vida útil do trocador e melhora o retorno sobre o investimento (ROI) do projeto. Simulação O estudo de simulação, utilizando o STAR-CCM+ , em questão concentra-se na análise detalhada de um trocador de calor casco-tubo , com o objetivo de investigar as variáveis chaves da troca térmica e estabilidade operacional do equipamento. A modelagem adotou o regime de transferência de calor conjugada (CHT – Conjugate Heat Transfer) , permitindo simular simultaneamente o escoamento dos fluidos e a condução térmica nas paredes dos tubos e do casco. Cada domínio foi tratado com diferentes propriedades físicas, representando com maior fidelidade os materiais e fluidos envolvidos. A malha computacional foi refinada nas regiões críticas, especialmente nas proximidades dos tubos, onde há maior gradiente térmico e influência na transferência de calor. Figura 1. Geometria e malha computacional Na Figura 2, observa-se o perfil de temperatura em um corte vertical do domínio. O fluido nos tubos entra a 353 K, enquanto o fluido no casco inicia a 298 K. Ao final do percurso, a temperatura de saída dos tubos apresentou uma redução de aproximadamente 7 K. Essa queda é mais acentuada na região central do trocador (Figura 3), indicando maior interação térmica entre os fluxos, favorecida pela geometria e disposição dos tubos e das chicanas internas, que promovem turbulência e melhor mistura. Figura 2. Perfil temperatura Figura 3. Gráfico da temperatura eixo -X O perfil de velocidade, apresentado na Figura 4, evidencia maiores velocidades nas zonas de entrada, com destaque para o tubo superior, essa aceleração está relacionada aos gradientes de pressão. Observa-se ainda a formação de zonas de recirculação e redemoinhos logo após a entrada, especialmente junto às chapas defletoras, que promovem mudanças de direção e intensificam a turbulência. Próximo à saída, ocorre nova aceleração do fluido, reforçando o design hidráulico na melhoria da eficiência térmica e na prevenção de zonas mortas de baixa renovação de calor. Figura 4. Perfil de velocidade Já a Figura 5 mostra a iso-superfície de velocidade, onde é possível observar flutuações provocadas pela presença das chicanas no casco. Essas estruturas desempenham um papel fundamental na homogeneização do escoamento, direcionando o fluido transversalmente aos tubos e aumentando a eficiência da troca térmica por meio do aumento da turbulência local. Figura 5. Iso - superfície da velocidade Aumentando a complexidade Avançar no nível de complexidade do modelo para representar com maior fidelidade o comportamento térmico e fluidodinâmico do trocador de calor. Destacam-se: Uso de geometrias avançadas (tubos aletados, helicoidais, etc.) Modelagem multifásica em aplicações com condensação ou evaporação Propriedades termo-físicas variáveis conforme a temperatura Análises paramétricas e acoplamento com otimização numérica Conclusão A simulação CFD aplicada a trocadores de calor casco-tubo capta o entendimento dos fenômenos térmicos e fluidodinâmicos que impactam diretamente o desempenho do equipamento. Identificando zonas críticas de recirculação, variações de velocidade e regiões de intensa troca térmica. Poder prever de forma detalhada e precisa os fenômenos físicos envolvidos na operação do equipamento, permite otimizar o desempenho antes da fabricação, garantindo maior eficiência e confiabilidade e menor custo operacional, alavancando a inovação e o desenvolvimento para equipamentos cada vez melhores. Quer projetar trocadores de calor mais eficientes, confiáveis e com menor custo operacional? Agende uma reunião com a CAEXPERTS e descubra como a simulação CFD com o STAR-CCM+ pode transformar seus desafios em soluções precisas, econômicas e de alto desempenho. WhatsApp: +55 (48) 98814-4798 E-mail: contato@caexperts.com.br











