Resultados da busca
169 resultados encontrados com uma busca vazia
- Retrospectiva 2024 – Parte 2
Chegamos à parte mais aguardada da nossa retrospectiva: os Nesta segunda parte, destacamos os cinco melhores posts do ano , que trouxeram as maiores inovações, aprendizados e soluções compartilhadas pela CAEXPERTS . Prepare-se para descobrir os melhores insights que compartilhamos este ano! Mas primeiro vale relembrarmos a primeira parte desse post com os posts do 10º ao 6º lugar , que pode ser conferido AQUI! TOP 10: Do décimo ao sexto lugar 🔟 Validação de Célula de Combustível: Estudo de Caso Parte 1 – CFD Parte 2 – FEA Parte 3 – Simulação Sistêmica e Integração Veicular 9️⃣ Modos de deformação de componentes flexíveis em mecanismos 8️⃣ Simulações de turbinas a gás 7️⃣ E3 UFSC bate recorde latino-americano na Shell Eco-marathon Brasil 6️⃣ Como obter melhores condições de contorno para modelos de motor E agora chegamos ao momento mais aguardado do nosso TOP 10 de 2024 ! 5️⃣ Explorando Inovações em Simulação: Projetos Transformadores no Setor de Óleo e Gás 🧪 No setor de Óleo e Gás, a simulação computacional desempenha um papel essencial na otimização de operações, segurança e sustentabilidade. Ferramentas como o Simcenter Flomaster permitem prever cenários críticos, como surtos de pressão, enquanto modelos avançados aprimoram processos de refino, planejamento de manutenção preditiva e análise ambiental. Da exploração em águas ultra-profundas ao treinamento de operadores, a simulação é a chave para inovações que aumentam a eficiência e a segurança em projetos desafiadores. 4️⃣ Módulo Simcenter FLOEFD EDA Bridge: Agilizando Análises Térmicas de Eletrônicos ⚡ O Simcenter FLOEFD EDA Bridge está revolucionando a análise térmica de PCBs (Placas de Circuito Impresso). Com a capacidade de importar dados detalhados de PCBs diretamente para ferramentas MCAD, como o Simcenter FLOEFD , o módulo simplifica o processo de modelagem térmica com precisão e eficiência. Soluções como Smart PCB e o suporte a formatos como ODB++ e IPC2581B permitem simulações detalhadas de componentes e territórios térmicos, otimizando desde o design inicial até montagens completas. Essa inovação acelera o tempo de análise sem comprometer a fidelidade dos resultados, oferecendo um avanço inestimável para projetos eletrônicos. 3️⃣ Liquefação de Hidrogênio: Desafios e Soluções com Simcenter Flomaster 💧 A liquefação de hidrogênio é um processo crucial para viabilizar o armazenamento e transporte desse combustível promissor, mas enfrenta desafios complexos, como derramamentos e variáveis críticas de pressão. Com o Simcenter Flomaster , os engenheiros podem simular e otimizar plantas químicas, implementando válvulas de segurança estratégicas e controladores que reduzem perdas em até 72,5% no volume de hidrogênio perdido. Essa ferramenta não apenas prevê problemas, mas permite controlá-los em tempo real, garantindo operações seguras e eficientes. 2️⃣ Por que licenciar software SIEMENS com a CAEXPERTS é a melhor escolha 💻 Licenciar software SIEMENS com a CAEXPERTS significa optar por um parceiro tecnológico certificado, capaz de oferecer consultoria avançada, implementação personalizada e suporte contínuo. Com expertise em soluções de engenharia e simulação computacional, a CAEXPERTS maximiza o retorno sobre o investimento ao integrar ferramentas SIEMENS às necessidades específicas da sua empresa, promovendo inovação e eficiência em todos os níveis. 1️⃣ Webinar CAEXPERTS/SIEMENS: Simulação de Tanques Agitados com STAR-CCM+ 🌀 O webinar da CAEXPERTS apresentou como o Simcenter STAR-CCM+ está revolucionando o design e a operação de tanques agitados. Com simulação digital integrada, é possível prever e otimizar processos, reduzir custos operacionais e aumentar a eficiência de maneira sustentável. A ferramenta oferece soluções para desafios como mistura de fluidos não-newtonianos, modelagem multifásica e otimização de design. ✨ Encerramos com chave de ouro o TOP 10 de 2024! Os cinco melhores posts do ano mostraram como a tecnologia e a inovação estão transformando a engenharia, sempre com a CAEXPERTS ao lado dos profissionais que buscam excelência e resultados de ponta. Este ano foi marcado por grandes conquistas e aprendizados compartilhados. Agradecemos a você, que esteve conosco em 2024, acompanhando nossas iniciativas e fazendo parte da nossa história. 🎆 Feliz Ano Novo! Que 2025 venha repleto de novas oportunidades, projetos inspiradores e muito sucesso para todos nós! 🚀 👉 Não fique de fora das novidades! Siga nossa página @CAEXPERTS e continue acompanhando conteúdos exclusivos e soluções inovadoras para transformar seus projetos no próximo ano! 💡 Agende uma reunião conosco e saiba como a CAEXPERTS pode trazer a inovação para sua empresa no ano de 2025! WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br
- Retrospectiva 2024 – Parte 1
Chegou o momento de relembrar os conteúdos que mais impactaram e engajaram nossa audiência este ano! A CAEXPERTS trouxe insights valiosos sobre inovação, tecnologia e eficiência em diferentes setores. Nesta primeira parte, confira os destaques do 10º ao 6º lugar no nosso TOP 10 de 2024 e reviva as ideias e soluções que marcaram o ano! 🔟 Validação de Célula de Combustível: Estudo de Caso 🔋 Na décima posição do nosso TOP 10, apresentamos não apenas um post, mas uma série de 3 posts interligados, explorando a validação de células de combustível por meio de análises avançadas de simulação. 🔹 Parte 1 – CFD Abrindo a série, detalhamos a modelagem multifísica e a simulação CFD (Dinâmica de Fluidos Computacional) com o Simcenter STAR-CCM+ . Este post apresenta a reprodução digital da célula de combustível JRC ZERO∇CELL, validada com base em testes reais, e explora como integrar escoamento de fluidos, transferência de calor, reações químicas e eletroquímicas. 🔹 Parte 2 – FEA No segundo post, focamos na análise estrutural (FEA) , utilizando o Simcenter 3D e o Solid Edge . A robustez da célula foi validada considerando condições de pressão e temperatura importadas do STAR-CCM+ , com destaque para a análise de fadiga e resistência mecânica do sistema. 🔹 Parte 3 – Simulação Sistêmica e Integração Veicular Fechando a série, este post aborda a simulação sistêmica no Simcenter Amesim , explorando a integração da célula de combustível em sistemas veiculares. A análise destacou o desempenho dinâmico, eficiência energética e escalabilidade da solução em veículos híbridos e elétricos. 9️⃣ Modos de deformação de componentes flexíveis em mecanismos: Efeitos no NVH e como o Simcenter 3D Motion pode simulá-los. ⚙️ Estudar o impacto da deformação de componentes flexíveis no NVH (Noise, Vibration e Harshness – Ruído, Vibração e Rugosidade) sempre foi um desafio. Com o Simcenter 3D Motion e sua funcionalidade de Edição Modal , engenheiros agora podem ajustar frequências modais de forma precisa e otimizar o desempenho de sistemas como trens de força. Essa inovação já demonstrou reduções significativas de vibrações em rotações de até 4.000 rpm, simplificando processos e entregando resultados superiores. 8️⃣ Simulações de Turbinas a Gás As turbinas a gás representam o auge da engenharia, combinando física complexa e design intuitivo. Por trás de sua beleza intrincada, avanços como o HEEDS AI Simulation Predictor estão transformando o processo de design e otimização. Em estudos recentes, foi possível economizar até 49% do tempo de simulação e aumentar a eficiência de componentes em até 10%, integrando aprendizado de máquina às ferramentas de simulação como Simcenter STAR-CCM+ e NX . Esses avanços destacam como a tecnologia pode reduzir custos, acelerar projetos e elevar a competitividade no mercado. 7️⃣ E3 UFSC bate Recorde latino-americano na Shell Eco-marathon Brasil🏆 A equipe E3 UFSC estabeleceu um marco histórico na Shell Eco-marathon Brasil 2024 , atingindo 381 km/kWh com seu protótipo de bateria elétrica. A conquista teve suporte da CAEXPERTS e das tecnologias da Siemens , que forneceram ferramentas de ponta como NX , Simcenter STAR-CCM+ e Simcenter 3D . Com inovações como um novo sistema de transmissão e rodas de fibra de carbono, a equipe otimizou seu design para alcançar eficiência máxima, consolidando-se como referência em projetos sustentáveis e ultrapassando limites de desempenho energético. 6️⃣ Como obter melhores condições de contorno para modelos de motor?✅ A precisão de um modelo de motor depende diretamente da qualidade das condições de contorno definidas. Ferramentas como o Simcenter 3D , Simcenter Amesim e Simcenter STAR-CCM+ permitem capturar fenômenos críticos, como coeficientes de transferência de calor e fluxos térmicos, incorporando correlações proprietárias e conhecimento de engenharia. Com simulações avançadas e integração de modelos 2D e 3D, é possível otimizar o desempenho de motores de turbinas a gás em diferentes cenários operacionais, garantindo eficiência, precisão e maior vida útil dos componentes. ✨ Essa foi a primeira parte do nosso TOP 10 de 2024! Continue nos acompanhando para conhecer os 5 posts mais marcantes de 2024 na próxima parte. Aproveite e siga a CAEXPERTS nas redes sociais para não perder as novidades e insights que já estamos preparando para 2025. 🚀 Agende uma reunião conosco e saiba como a CAEXPERTS pode trazer a inovação para sua empresa no ano de 2025! WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br
- Transformação de "frio para quente" em turbomáquinas
O impacto das mudanças geométricas no desempenho e na durabilidade Engenheiros e projetistas de turbomáquinas enfrentam um desafio significativo quando se trata de lidar com as mudanças geométricas que ocorrem entre condições operacionais descarregadas e carregadas. Essas mudanças não só impactam a eficiência e a potência das turbomáquinas, mas também afetam sua durabilidade e vida útil. Para prever e representar com precisão o comportamento de um motor real, engenheiros e projetistas devem considerar essas mudanças geométricas e (ou seja, transformações de frio para quente em turbomáquinas) ao projetar componentes afetados. Além dos desafios típicos de design, a digitalização e integração de threads digitais oferecem um potencial ainda maior para personalizar e otimizar componentes de turbomaquinaria de acordo com as especificações do cliente. O thread digital serve como base e estrutura para um processo de desenvolvimento de motor mais integrado e conectado, começando pelos requisitos iniciais e especificações arquitetônicas e continuando até que o motor esteja em operação. Ao longo de cada estágio de desenvolvimento, dados valiosos são gerados. Ao conectar e analisar esses dados de forma significativa, os engenheiros podem obter insights adicionais e identificar áreas para melhoria. Transformações digitais de frio para quente desempenham um papel na turbomáquina Um exemplo prático pode ser visto na estreita conexão entre design, fabricação e operação. Modelo CAD nominal de uma turbina e variações de varreduras de lâminas Devido a condições ambientais ou outros fatores externos, os componentes finais fabricados podem se desviar de sua forma ideal projetada digitalmente. Esses desvios podem cair dentro dos limites especificados ou excedê-los significativamente. Componentes que estão fora ou no limite de tolerância podem ter efeitos desconhecidos no desempenho e durabilidade do motor. No caso de peças críticas, a solução típica é descartá-las. No entanto, o que acontece com os componentes que estão na fronteira da tolerância? Às vezes, o impacto desses desvios só é descoberto durante os testes de desempenho final, o que geralmente é tarde demais e requer desmontagem para substituir peças relacionadas. Não seria valioso antecipar o possível impacto com antecedência? Além disso, não seria ainda mais benéfico alavancar esses desvios e ajustar a montagem final escolhendo seletivamente peças para melhor atender aos requisitos finais? A abordagem de transformação de frio para quente centrada em CAD em turbomaquinários Na indústria de motores aeronáuticos, é prática comum inspecionar e escanear componentes críticos, especialmente aqueles sujeitos a rotação ou cargas térmicas, após a fabricação e armazenamento dos dados coletados. Seria benéfico alavancar esses dados conectando-os ao processo de design para explorar virtualmente componentes da vida real que podem se desviar ligeiramente de suas contrapartes digitais. Para conseguir isso, pode-se começar virtualizando a peça física “conforme fabricada” e comparando-a com seu gêmeo digital “conforme projetado”. Ao capturar medições de um componente fisicamente fabricado por meio de técnicas de digitalização ou manuais, pode-se ajustar manualmente a representação CAD da peça ou utilizar técnicas de engenharia reversa, como transformar um arquivo CAD para corresponder ao conjunto de dados STL digitalizado. A etapa subsequente envolve uma transformação de frio para quente em turbomaquinário, que envolve transformar a condição “fria” descarregada do componente para seu estado operacional carregado (“quente”). Isso permite uma avaliação digital e avaliação do desvio de desempenho em comparação com os resultados obtidos durante as fases de projeto. O portfólio Simcenter , uma parte da plataforma de negócios Siemens Xcelerator , fornece um método rápido e eficiente para determinar as mudanças geométricas que ocorrem ao transitar de uma condição descarregada para uma condição operacional carregada (transformação de frio para quente). Essa abordagem segue uma estratégia de transformação centrada em CAD, garantindo que o CAD transformado resultante retenha seus atributos e características, incluindo convenções de nomenclatura. Isso permite integração perfeita em fluxos de trabalho de simulação existentes, como análises mecânicas e aerodinâmicas. O processo começa com uma representação CAD fria “como fabricado” do componente e conclui com uma representação CAD carregada “como operado”. A abordagem segue uma metodologia não linear, que permite a consideração do comportamento não linear do material, deformação viscoelástica e condições de contato não lineares. Complexidade de transformação de frio para quente em turbomaquinário Ao considerar tal não linearidade, torna-se possível simular com precisão transformações geométricas complexas, como lâminas envoltas com contatos que restringem a deformação. Isso garante que as representações geradas imitem de perto o comportamento real de uma peça fabricada sob condições operacionais reais. A abordagem centrada em CAD permite a integração perfeita da representação do componente deformado em conjuntos de dados de simulação, incluindo aqueles obtidos durante as fases de projeto. Como resultado, uma exploração virtual abrangente da peça real fabricada pode ser conduzida. Em nosso exemplo, a transformação CAD de frio para quente é realizada usando o software Siemens NX , utilizando a funcionalidade de deformação global do NX ou o aplicativo OmniFree adicional. Para habilitar a transformação CAD, a deformação deve ser conhecida. Isso é obtido por meio de uma abordagem numérica acoplada iterativa envolvendo Simcenter STAR-CCM+ , Simcenter 3D e Simcenter Nastran , garantindo a mais alta fidelidade dos resultados. Demonstração de fluxo de trabalho com o Rotor 67 da NASA Fluxo de trabalho de simulação iterativa: transformação de frio para quente, aplicado exemplarmente ao Rotor 67 da NASA Para ilustrar o fluxo de trabalho, podemos usar o amplamente reconhecido NASA Rotor 67 como exemplo. A geometria e as condições de contorno para este rotor foram obtidas de fontes de literatura aberta. O processo começa com a transferência de uma peça CAD fria do Siemens NX diretamente para o Simcenter STAR-CCM+ . No Simcenter STAR-CCM+ , fluido operacional e cargas térmicas são aplicadas ao modelo CAD. Como resultado inicial, cargas aerotérmicas e aerodinâmicas atuando na lâmina podem ser obtidas. Simulação aerodinâmica do Rotor 67 da NASA no Simcenter STAR-CCM+ para obter cargas aerodinâmicas e aerotérmicas em condições operacionais Essas cargas de lâmina são subsequentemente utilizadas como condições de contorno para a próxima etapa do processo, que envolve conduzir uma análise estrutural não linear de elementos finitos usando o Simcenter 3D . A análise é realizada usando o solucionador não linear Nastran SOL 401 , permitindo o cálculo da deformação do componente. Simulação de elementos finitos não lineares no Simcenter 3D e Simcenter Nastran para obter deformação operacional A saída da análise de elementos finitos não lineares produz informações valiosas sobre a malha deformada. Essas informações são então exportadas como um arquivo STL do ambiente de pós-processamento Simcenter 3D e transferidas para o software CAD Siemens NX . No software CAD Siemens NX , a transformação CAD é realizada pela transformação da representação CAD fria inicial para corresponder à deformação da malha quente obtida. Transformação CAD no Siemens NX O resultado desse fluxo de trabalho é uma representação CAD deformada, que pode ser utilizada posteriormente como uma parte CAD em um processo CAE centrado em CAD. Por meio desse fluxo de trabalho CAE totalmente incorporado, o Simcenter capacita engenheiros a conduzir estudos de sensibilidade e comparativos rápidos e precisos. Ele também permite melhorias e acelera fluxos de trabalho de multidesign e otimização dentro das fases de design de componentes de motores de turbina. Para ilustrar isso, um desvio artificial foi introduzido no Rotor 67 da NASA manipulando o ângulo de escalonamento da lâmina em 2 graus. A representação CAD recém-gerada "conforme fabricada" foi então submetida à abordagem de simulação iterativa para avaliar rapidamente o desvio de desempenho sob as mesmas condições operacionais do projeto originalmente projetado. Este processo não requer a configuração de novas simulações; a única etapa necessária é substituir a peça CAD e executar novamente as simulações. Todas as configurações, condições de contorno, pós-processamento e etapas de conectividade do fluxo de trabalho podem ser automatizadas. Isso permite uma mudança perfeita na geometria com apenas um toque de botão, utilizando HEEDS para orquestrar o fluxo de trabalho da simulação. Desempenho aerodinâmico impactado no Rotor 67 da NASA por um desvio de fabricação aplicado artificialmente O fluxo de trabalho apresentado oferece a engenheiros, designers e analistas um método rápido e preciso para executar a transformação de frio para quente de geometria centrada em CAD em turbomaquinário, ao mesmo tempo em que considera condições de contorno realistas e características de deformação da vida real. Ele fornece uma abordagem rápida e precisa para atingir a representação mais precisa do processo de transformação de geometria. O Simcenter oferece um portfólio abrangente de soluções de simulação projetadas especificamente para aplicações de turbomáquinas Deseja maximizar o desempenho e a durabilidade das suas turbomáquinas? Agende uma reunião com a CAEXPERTS e descubra como soluções personalizadas e avançadas podem otimizar cada etapa do desenvolvimento. Entre em contato agora mesmo! WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br
- Simulando um sistema de armazenamento de hidrogênio com o Simcenter Amesim
O setor de transportes é hoje responsável por mais de 20% das emissões globais de CO₂. Para atingir a neutralidade climática, precisamos reduzir as emissões de transportes em 90% até 2050. Embora possamos ver uma tendência clara de adoção de baterias para veículos leves, células de combustível alimentadas por hidrogênio parecem ser uma alternativa promissora para aplicações pesadas. O armazenamento de hidrogênio para mobilidade, no entanto, continua desafiador quando se considera o alto volume tomado por esse gás ultraleve. Para reduzir esse volume para aplicações de transporte, o hidrogênio é geralmente comprimido a um nível de pressão de 350 ou mesmo 700 bar. O armazenamento em forma líquida também pode ser considerado, mas requer resfriamento a um nível de temperatura muito baixo e essa tecnologia é atualmente usada para foguetes e aplicações aeroespaciais. Considerando os sistemas de armazenamento gasoso, o alto nível de pressão requer tanques específicos com estruturas sólidas, mas também materiais à prova de vazamento de H₂ que suportem altas variações de temperatura, especialmente durante as operações de desabastecimento. Esse post apresenta um modelo de um sistema multitanque de hidrogênio de alta pressão montado em um caminhão trator usando simulação de sistema Simcenter. A fase de desabastecimento é simulada e as temperaturas dos tanques são especialmente monitoradas. Descrição do sistema O sistema considerado consiste em 5 tanques de hidrogênio de alta pressão do tipo IV, sendo 3 posicionados atrás da cabine do caminhão trator e 2 em ambos os lados entre os eixos dianteiro e traseiro, conforme ilustrado na figura 1 abaixo. Figura 1: Posição dos 5 tanques de H2 considerados Os tanques de hidrogênio do tipo IV têm um revestimento interno não metálico (polímero) e um envoltório externo de compósito reforçado completo. Ambas as características permitem garantir a estanqueidade do hidrogênio e sustentar altas pressões. Tal tanque pode ser ilustrado com a figura 2: Figura 2: Ilustração de um tanque de hidrogênio tipo 4 As características dos tanques são as seguintes: Pressão 700 barA Material do forro PEAD = Polietileno de Alta Densidade – espessura 5 milímetros Segunda camada CFRP = Plástico Reforçado com Fibra de Carbono – espessura 35 milímetros Camada externa GFRP = Plástico Reforçado com Fibra de Vidro – espessura 20 milímetros Comprimento do tanque 2000 milímetros Diâmetro interno do tanque – lateral 505 milímetros Volume interno do tanque – lateral Tanque único 400,6 L Massa total de hidrogênio – lado @15°C – 2 tanques 29,9 kg Diâmetro interno do tanque – traseiro 357 milímetros Volume interno do tanque – traseiro Tanque único 200,3 L Massa total de hidrogênio – traseira @15°C – 3 tanques 31,9 kg Tabela 1: Principais características dos tanques de H₂ Modelo correspondente O sistema descrito acima é modelado no Simcenter Amesim conforme ilustrado pela figura a seguir: Figura 3: Modelo de sistema de tanque H ₂ no Simcenter Amesim Os 2 tanques laterais são representados na parte inferior do modelo, enquanto os 3 traseiros estão na parte superior. Eles são todos ligados entre si a um volume comum seguido por um regulador de pressão ajustado para 2,5 barA. A fonte de fluxo de massa no lado direito permite definir cenários de reabastecimento ou desabastecimento (respectivamente fluxos de massa de hidrogênio positivos e negativos como condição de contorno do tanque). Nesse post, serão apresentados cenários de desabastecimento com diferentes fluxos de massa constantes e diferentes temperaturas iniciais do gás. Esses cenários permitem ver em quais casos a temperatura mínima do gás (geralmente -40 graus C), que pode potencialmente danificar os materiais do tanque (ou seja, revestimento), é atingida. O componente SOC, ou seja, Estado de Carga, calcula durante a simulação a massa de hidrogênio restante da inicial em porcentagem. Principais suposições e considerações térmicas Equação de Estado do Gás (EOS): A 700 barA e temperatura padrão, o Hidrogênio é supercrítico e o fator de compressibilidade é maior que 1,4, exigindo, portanto, o uso de uma Equação de Estado do Gás Real para descrever corretamente seu comportamento. Diferentes EOS estão disponíveis no Simcenter Amesim para esse propósito: Van Der Waals, Redlich-Kwong, Redlich-Kong-Soave, Peng Robinson, MBWR e Helmholtz. O Redlich-Kong-Soave EOS (RKS) é usado neste exemplo. Considerações térmicas: Além de uma boa EOS, a modelagem do comportamento térmico do sistema é crucial neste exemplo. Para a parte interna do tanque, trocas convectivas livres e forçadas entre hidrogênio e o revestimento interno são consideradas. Correlações de Nusselt são usadas para definir o coeficiente de transferência de calor. A correlação de Nusselt para a convecção livre é uma função dos números de Grashof e Prandtl, a da convecção forçada, uma função do número de Reynolds. Em relação às 3 camadas do material do tanque, a condução radial é considerada usando a espessura e a condutividade de cada uma delas Em relação à convecção da superfície externa do tanque para o ambiente, uma correlação clássica de Nusselt para convecção forçada ao redor de um cilindro é usada com uma velocidade do ar ambiente de 5 m/s. Observe que a temperatura inicial do tanque de gás é igual à temperatura ambiente Cenários simulados 3 cenários de desabastecimento são simulados e comparados. A tabela a seguir resume as condições desses cenários: # Temperaturas ambiente e inicial de H₂ [degC] Fluxo de massa de H₂ [g/s] 1 15 -3 2 -10 -3 3 -10 -1,5 Tabela 2: cenários simulados Observe que, para esses cenários, o tempo de simulação para quando o SOC atinge 5% ou um tempo máximo de 10 horas. Os resultados dos 3 cenários simulados estão reunidos na figura abaixo (veja a cor do cenário associado) – a temperatura do gás é a da câmara de mistura que liga todos os tanques: Figura 4: Resultados dos cenários de desabastecimento – Temperatura do gás [degC] Figura 5: Resultados dos cenários de desabastecimento – Pressão do gás [barA] Figura 6: Resultados dos cenários de desabastecimento – Estado de carga [%] A simulação para em: 4h 54min para o cenário #1 5h 13min para o cenário #2 10h 00min para o cenário #3 Como pode ser visto nos resultados, a temperatura crítica de -40 °C é atingida pouco antes de 4 horas para o segundo cenário, começando com uma temperatura inicial de -10 °C com um fluxo constante de hidrogênio de 3 g/s. Note que 3 g/s de hidrogênio representam (usando o Baixo Valor Calorífico de H₂) cerca de 360kW de potência constante. Considerando uma eficiência de Célula de Combustível de cerca de 50%, isso significaria que não poderíamos sustentar uma demanda de potência constante de 180kW por mais de 4 horas nas condições do cenário #2 . Nesse estágio, o SOC é de cerca de 31%. Os outros dois cenários são melhores, termicamente falando, já que a temperatura mínima do gás atingida é, respectivamente, -21,5 °C e -29 °C para os cenários 1 e 3. Também podemos dar uma olhada nas temperaturas dos materiais, conforme apresentado na imagem a seguir: Figura 7: Evolução dos materiais do tanque e das temperaturas do H ₂ para o cenário nº 1 Figura 8: Evolução dos materiais do tanque e das temperaturas do H ₂ para o cenário #2 Figura 9: Evolução dos materiais do tanque e das temperaturas do H ₂ para o cenário #3 Observe que essa simulação é muito rápida, pois o tempo total de CPU para cada cenário é muito menor que 1 segundo. Conclusão e perspectivas Neste post foi apresentado a simulação do sistema de cenários de desabastecimento para um sistema de 5 tanques de hidrogênio de alta pressão representativos de uma configuração de caminhão pesado. Tal simulação pode rapidamente dar uma boa avaliação das evoluções de temperatura e pressão dentro dos tanques, bem como para as diferentes camadas de material. Isso pode ajudar no dimensionamento dos tanques e na determinação dos cenários críticos que levam a temperaturas que podem ser prejudiciais para a estrutura do tanque. Esse modelo depende de correlações de trocas térmicas padrão e de uma Equação de Estado Real de Gás reconhecida. Cenários de desabastecimento foram apresentados, mas o modelo também pode ser usado para reabastecimento. Cenários de reabastecimento podem exigir complexidade adicional, como substituir os volumes 0D que representam cada tanque por uma câmara estratificada, também disponível no Simcenter Amesim . Como um complemento valioso, poderia ser aproveitada a execução de análises CFD 3D mais detalhadas com o Simcenter STAR-CCM+ em cenários curtos dedicados para refinar as correlações de troca térmica, bem como o padrão de fluxo de H₂. Otimize seus projetos de transporte pesado com a precisão do Simcenter Amesim ! Agende uma reunião com a CAEXPERTS e descubra como nossas simulações avançadas podem prever cenários críticos e garantir a segurança e eficiência dos seus projetos. Entre em contato agora! WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br
- A nova revolução em testes: Simcenter 3D Smart Virtual Sensing e teste de sistema baseado em modelo
O Smart Virtual Sensing está mudando a forma como se conduz testes de física. Teste e validação são etapas cruciais para o design do produto e a evolução de novos conceitos. Normalmente, sensores são instrumentados nos locais-chave e a resposta do sistema às condições de carga necessárias é medida. Isso permite verificar se as respostas estáticas e dinâmicas são as esperadas ou se um sistema pode sobreviver em condições críticas de carga. A tecnologia de teste evoluiu rapidamente devido à demanda por validação de teste eficiente, com o lançamento regular de novos tipos de sensores físicos, canais de teste de maior precisão, novos recursos de pós-processamento integrados, testes XiL e muito mais... Desafios para teste e validação Engenheiros de teste frequentemente se deparam com os seguintes desafios: Como você pode fazer uma medição em locais onde sensores físicos não podem ser colocados? Exemplos de tais lugares incluem: Os extensômetros não podem ser instalados em pontos quentes devido à geometria complexa A embalagem apertada torna impossível a instrumentação do acelerador na seção crítica As cargas operacionais são difíceis de medir, pois adicionar um transdutor de carga adicional modifica a dinâmica da estrutura Longo tempo de instrumentação e grande esforço para colocar um grande número de sensores para cobrir toda a estrutura A realização de testes completos de veículos para validar componentes específicos do veículo consome tempo e é dispendiosa Danos ocorrem na estrutura cara durante o teste devido a sobrecarga inesperada Muitos engenheiros já se perguntaram: não existe uma nova tecnologia que possa ajudar a enfrentar esses desafios? Soluções revolucionárias – Simcenter 3D Smart Virtual Sensing O Simcenter 3D Smart Virtual Sensing ajuda você a fazer estimativas de campo (deformação, estresse, velocidade, aceleração e deslocamento) e estimativas de carga (força, momento). Ele fornece uma estrutura para fusão de dados de previsão de modelo FE e medição física. Esta estrutura fornece resultados precisos com compensação tanto pela imprecisão do modelo quanto pelo ruído de teste. Além disso, além de aumentar os resultados dos testes após testes físicos, ele pode exportar um Executable Digital Twin (xDT) para ser executado em uma plataforma em tempo real para testes em tempo real. Com o Simcenter 3D Smart Virtual Sensing , você pode: Medir locais de pontos de acesso inacessíveis a partir de sensores físicos colocados em locais acessíveis Meça a aceleração de locais remotos para evitar lugares muito movimentados. Meça as cargas operacionais por meio de alguns extensômetros em vez de adicionar transdutores de carga. Use sensores virtuais para substituir ou enriquecer sensores físicos, para acelerar a campanha de testes e otimizar o custo Determine as cargas operacionais dos componentes alvo do teste do veículo inteiro e então reproduza as cargas equivalentes em uma bancada de teste. O monitoramento de todo o estresse de campo em tempo real durante o processo de teste permite que as cargas de entrada sejam ajustadas quando o estresse crítico for atingido. Implementação Como pode-se lidar com tantos desafios? O Simcenter fornece um fluxo de trabalho integrado do aplicativo Simcenter 3D Smart Virtual Sensing para os ambientes de teste. Isso é baseado no Executable Digital Twin (xDT) exportado que pode ser implantado em plataformas Model-based System Testing (MBST) , dando a ele a capacidade adaptativa para resolver vários problemas de teste. O ponto de partida deste fluxo de trabalho é sempre com o Simcenter 3D Smart Virtual Sensing , onde a solução de sensoriamento virtual inteligente é criada e a entrada e a saída do xDT são definidas. As entradas são as medições físicas necessárias, a saída pode ser sensores virtuais em locais necessários, cargas e status de campo completo. O solver de fusão de dados e o modelo FE de ordem reduzida são incorporados no xDT exportado. Teste de sistema baseado em modelo off-line vs em tempo real O Simcenter 3D Smart Virtual Sensing xDTs pode ser implantado no Simcenter Testlab RT (MBST em tempo real) e no Simcenter Testlab Neo (MBST offline). Cada opção habilita diferentes cenários de usuário. Você pode escolher trabalhar offline porque simplesmente deseja estender os conjuntos de dados medidos. Como você já concluiu o teste e a aquisição de dados, os dados de detecção virtual podem ajudar a estender suas medições físicas para fornecer a você uma visão completa da engenharia, como cargas operacionais e medição de detecção virtual aumentada. Ele permite que você integre facilmente o novo método em projetos de teste existentes. Por exemplo, execute análises de durabilidade em mais locais com sensores virtuais estendidos. A implantação do Smart Virtual Sensing no Testlab RT fornece todas as cargas e estimativas de sensores virtuais em tempo real, permitindo que você monitore e interaja com o processo de teste. Por exemplo, ao testar uma nova peça ou mesmo um protótipo, danificar a peça pode resultar em grandes custos e tempos de desenvolvimento estendidos. Portanto, métodos de proteção da peça podem ser inestimáveis. Com o Simcenter Testlab RT junto com o Smart Virtual Sensing xDT, você ganha insights adicionais sobre sua peça durante o teste. Se as cargas excederem os valores aceitáveis, o teste pode ser interrompido, protegendo a peça. Teste de sistema baseado em modelo off-line Você pode primeiro executar testes e aquisição de dados e, então, aumentar os resultados dos testes implantando o Smart Virtual Sensing xDT dentro do Simcenter Testlab Neo. As entradas do xDT serão dados de teste correspondentes, as saídas são canais de sensores virtuais e cargas estimadas. Implantação de testes de sistema baseados em modelos off-line Pode-se implementar o Simcenter 3D Smart Virtual Sensing xDT no Simcenter Testlab Neo simplesmente seguindo as etapas abaixo: Etapa 1: Teste de desempenho com sensores físicos instrumentados e Simcenter SCADAS para aquisição de dados Etapa 2: Implante o Smart Virtual Sensing xDT no ambiente de teste usando o método dedicado da Unidade de Mock-up Funcional (FMU) no Simcenter Testlab Neo Process Designer Etapa 3: Configurar entradas xDT com resultados de medições físicas Etapa 4: Execute xDT para estender suas medições físicas com mais canais de sensores virtuais e cargas estimadas Etapa 5: Execute mais pós-processamento de dados de teste com base nos resultados de teste enriquecidos para fornecer a você uma visão completa da engenharia. O fluxo de trabalho completo foi projetado para que o Smart Virtual Sensing xDT exportado possa ser perfeitamente integrado ao ambiente de teste. Ele abre muitas novas oportunidades para facilitar o processo de teste. Por exemplo, algumas medições de deformação feitas em locais acessíveis podem produzir o estresse de pontos quentes e cargas operacionais, sobrecarregando a usabilidade dos resultados de medição tradicionais. Com as cargas estimadas, você pode realizar análises de resistência e durabilidade. Teste de sistema baseado em modelo em tempo real Você pode achar que a abordagem off-line é boa, mas você deve concluir o teste primeiro e então executar a argumentação dos dados de teste. Você, portanto, quer obter a estimativa de detecção virtual em tempo real. Com o Smart Virtual Sensing xDT incorporado ao MBST em tempo real, você pode obter os canais de teste virtuais estendidos, visualizar o estresse e a deformação de campo completos durante o teste e até mesmo usar essa estimativa de campo para otimizar o processo de teste. Por exemplo, como mencionado anteriormente, você pode diminuir as cargas de entrada quando atingir sua margem de segurança para o estresse crítico. Isso pode ajudar a proteger seu objeto de teste caro ou insubstituível. O MBST em tempo real pode ser configurado implantando o Simcenter 3D Smart Virtual Sensing xDT no Simcenter Testlab RT. O Simcenter Testlab RT fornece o software de aplicativo e o hardware em tempo real para executar o Simcenter 3D Smart Virtual Sensing xDT, alimentar as entradas físicas para a entrada FMU e obter as saídas definidas pela FMU em tempo real. Isso fornecerá a estimativa de carga e a estimativa de campo ao mesmo tempo que a medição física. Os resultados dos canais virtuais podem ser exibidos como um gráfico junto com os canais físicos, os resultados da estimativa de campo completo também podem ser transmitidos para a ferramenta de visualização para obter o status de campo completo. Implantação de testes de sistema baseados em modelos em tempo real Etapa 1: Sensores de instrumentos e conectá-los ao Testlab RT por meio de um sistema de aquisição de dados em tempo real Etapa 2: Implantar o Smart Virtual Sensing xDT no Testlab RT por meio da interface da web Etapa 3: Configurar as entradas xDT com canais de teste em tempo real Etapa 4: Execute os testes físicos e execute o Smart Virtual Sensor xDT para obter dados de detecção virtual em tempo real Etapa 5: Transmita os resultados da estimativa xDT para a ferramenta de visualização para monitoramento de status de campo completo Conclusão Para soluções MBST off-line e em tempo real, é importante saber onde colocar sensores e quantos sensores são necessários. O Simcenter 3D fornece o Optimal Sensor Placement para ajudar com isso. Com o Simcenter 3D Smart Virtual Sensing , até mesmo os pontos inacessíveis se tornam mensuráveis. Esta solução inovadora não só supera o desafio de colocar sensores físicos em áreas de difícil acesso, mas também reduz significativamente o tempo de instrumentação e os custos de hardware. Ao criar um Smart Virtual Sensing xDT dentro do Simcenter 3D , você pode exportar e incorporar o xDT no Simcenter Testlab Neo para aumento de resultados de teste off-line. Como alternativa, você pode implantar o xDT no Simcenter Testlab RT para testes de sistema baseados em modelo em tempo real. Essas integrações perfeitas aprimoram seus recursos de teste, fornecendo dados e insights precisos que antes eram inatingíveis. Este não é apenas um pequeno passo incremental em suas capacidades de teste, mas uma revolução para transformar seus processos de teste. Medir o ponto de acesso inacessível a partir de sensores de instrumentos colocados em locais acessíveis Obtenha cargas operacionais de forma prática para alavancar análise de resistência e estudo de durabilidade Economize tempo e custo de instrumentação ao testar grandes estruturas usando sensores virtuais Realizar testes de componentes equivalentes em uma bancada de testes reproduzindo cargas operacionais Obtenha insights sobre o desempenho e interaja com a estrutura durante todo o processo de teste Agende uma reunião com a CAEXPERTS e descubra como o Simcenter 3D Smart Virtual Sensing pode transformar seus processos de teste. A tecnologia inovadora de sensoriamento virtual otimiza testes em locais de difícil acesso, reduz custos e melhora a precisão dos resultados. Vamos juntos explorar as soluções que podem impulsionar sua eficiência, diminuir o tempo de instrumentação e proporcionar uma visão completa e precisa do desempenho dos seus produtos. Não perca essa oportunidade de elevar seus testes ao próximo nível. Entre em contato agora! WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br
- Módulo Simcenter FLOEFD EDA Bridge
Usando projetos de PCB detalhados importados e propriedades térmicas de IC para agilizar a análise térmica Benefícios Economize tempo e esforço usando designs de PCB detalhados importados e propriedades térmicas de IC para análise; Importe rapidamente dados detalhados de PCB para o Simcenter FLOEFD ; Melhore a precisão da análise com modelagem térmica mais detalhada de eletrônicos. EDA Bridge O módulo EDA Bridge do Simcenter FLOEFD fornece recursos para importação detalhada de placas de circuito impresso (PCBs) para a ferramenta de projeto mecânico auxiliado por computador (MCAD) de sua escolha na preparação para análise térmica. Historicamente, a melhor maneira de acessar dados de PCB era usar pares de arquivos Intermediate Data Format (IDF), que apresentam vários problemas, especialmente em relação à geometria do cobre no PCB. O Simcenter FLOEFD EDA Bridge permite a importação detalhada da PCB com propriedades térmicas de materiais e circuitos integrados (IC) para o Simcenter FLOEFD para análise térmica por conta própria ou como parte de uma montagem maior em nível de sistema. Formatos de arquivo de importação de PCB O Simcenter FLOEFD EDA Bridge pode usar quatro formatos de arquivo para importação: IDF CC e CCE (formato de arquivo nativo para software Xpedition™ e software PADS™ da Siemens Digital Industries Software) ODB++ (formato de arquivo neutro para fabricação de PCB) IPC2581B (formato de arquivo neutro do IPC Digital Product Model) O benefício de usar CCE, ODB++ ou IPC2581B é o empilhamento da PCB e a geometria de cobre pode ser lida e usada para criar geometria 3D. Isto é particularmente útil quando considerações térmicas, como acesso térmico de conexão vertical (vias) ou vazamentos de cobre, foram projetadas na placa. Níveis de modelagem de PCB Um PCB pode ser modelado de quatro maneiras usando o Simcenter FLOEFD : compacto , em camadas , explícito ou usando o novo Smart PCB . A abordagem mais adequada depende da granularidade exigida da simulação térmica, avaliada em relação ao tempo disponível para análise em um projeto e às restrições dos dados EDA disponíveis na fase de projeto. Mais informações sobre cada abordagem: 1. Compacto : uma propriedade de material ortotrópico é criada para levar em conta as condutividades térmicas no plano e no plano direto com base no conteúdo de cobre dentro da placa. 2. Em camadas (detalhado): cada camada possui sua própria propriedade de material com base na cobertura de cobre da camada, incluindo camadas dielétricas com vias. Opções de modelagem de condutividade térmica de material PCB para abordagens compactas e em camadas: Analítica : uma abordagem legada bem conhecida onde as propriedades efetivas são determinadas com base na média do volume do cobre e do dielétrico das camadas individuais da placa ou da placa inteira. Empírico : uma abordagem exclusiva e patenteada onde as propriedades efetivas são baseadas em uma correlação percentual de cobertura com a representação explícita do cobre. Vários exemplos de validação mostraram que os resultados baseados em condutividades térmicas efetivas empíricas preveem com mais precisão as temperaturas dos componentes do que o método analítico. Condutividade efetiva empírica no plano 3. Explícito : a modelagem explícita do cobre pode ser realizada em estágios de projeto mais maduros, quando as informações da placa totalmente roteada estão disponíveis. Você pode importar arquivos CCE, ODB++ ou IPC-2581B que contenham a netlist da placa e o layout de cobre, e então toda a geometria 3D apropriada será criada. Alternativamente, você pode adotar a abordagem de subconjunto para modelar redes individuais para análise de Aquecimento Joule usando a abordagem de rede explícita: Redes específicas podem ser selecionadas e modeladas como explícitas. O software criará então uma geometria 3D para se assemelhar a toda a rede, incluindo vias, no Simcenter FLOEFD . 4. Smart PCB : uma nova abordagem onde o cobre e o dielétrico dentro de uma placa roteada são representados usando uma montagem de rede. Para uma placa totalmente roteada, este é um método computacionalmente muito eficiente para um tempo de solução mais rápido. A fidelidade da representação pode ser ajustada alternando entre fino, que garante duas montagens de rede na largura do menor traço, ou média, que permite controle total para tornar mais grosseiro ou refinado a montagem da rede. O SmartPCB é uma abordagem única para processamento de dados de PCB ECAD que permite simulação térmica, termoelétrica e estrutural. O número de células na malha CFD e o tempo para resolver o SmartPCB são muito menores do que uma abordagem totalmente explícita, mas mantêm a mesma quantidade de detalhes. Para compreender a abordagem da Resolução Fina e, de forma mais geral, a criação do SmartPCB, considere cada camada representada por uma imagem equivalente da distribuição de cobre. A resolução máxima que pode ser alcançada é de 1 pixel, da ordem de 10 mícrons. Células ou blocos em áreas maiores de Cobre ou FR4 são mesclados para reduzir o número de nós na representação da rede. Territórios térmicos – Fidelidade da modelagem de PCB localizada A definição de fidelidade de modelagem localizada aprimorada oferece suporte a análises térmicas de PCB mais rápidas e computacionalmente eficientes. Ele elimina a necessidade de modelar explicitamente todo o PCB, sem sacrificar a precisão onde ela é mais necessária. Para contabilizar com precisão as influências da complexidade da camada e do traço de cobre onde elas são mais críticas, os usuários podem selecionar uma área sob um componente crítico (um território térmico padrão) ou definir uma área retangular definida arbitrariamente em qualquer lugar do PCB para abranger as propriedades da placa sob um grupo de componentes (território térmico autônomo). Vários territórios térmicos podem ser definidos em uma única placa e definidos como tipo compacto, em camadas (detalhado) ou explícito em conjunto com a forma como o nível geral de modelagem térmica da placa foi definido. Modelagem IC Componentes ou pacotes IC podem ser representados termicamente de diversas maneiras para simulação de resfriamento de eletrônicos. Dentro do EDA Bridge você pode configurar durante a importação os seguintes modelos. Se as alturas dos componentes não forem definidas na ferramenta de automação de projeto eletrônico (EDA), um padrão poderá ser especificado no EDA Bridge: Simples: use representações em bloco dos componentes. O tamanho é baseado no contorno da montagem ou posicionamento com as propriedades do material definidas. Dois resistores: use resistências térmicas θJB e θJC do Joint Electron Device Engineering Council (JEDEC). Multi-resistor DELPHI: rede de resistência térmica avançada compatível com as diretrizes JEDEC com nós de rede adicionais importados como um conjunto de rede. Modelos detalhados representam todos os materiais 3D e a geometria de um componente. Nota: modelos detalhados baseados em geometria CAD 3D limpa podem ser gerados usando o aplicativo Simcenter FLOEFD Package Creator em minutos. Importação PDML O PDML era originalmente um formato de software Simcenter Flotherm™ frequentemente usado por fornecedores para fornecer aos usuários um modelo de simulação de pacote IC. Esta definição de pacote IC no formato *.pdml pode ser importada para o Simcenter FLOEFD e contém informações sobre a geometria, carga de energia, propriedades do material ou a definição do modelo compacto térmico e propriedades radiativas da superfície. Filtragem de componentes eletrônicos ICs, resistores e outros componentes podem ser filtrados com base em um ou mais critérios. Isso foi projetado para permitir que os usuários removam componentes termicamente insignificantes da análise para acelerar o tempo computacional. Os orifícios de montagem também podem ser filtrados. Os usuários podem filtrar peças com base em: dimensão da área ocupada, altura, potência, densidade de potência ou designador de referência. Importar lista de potências Um arquivo CSV contendo o designador de referência e um número pode ser usado para aplicar múltiplas condições de limite em uma operação, em vez de peça por peça. Esta funcionalidade é útil quando muitos componentes estão presentes. Um arquivo CSV pode ser exportado para uso posterior ou edição, se necessário. As possíveis condições de contorno importadas variam desde o tipo e propriedades de modelagem do IC até sua potência dissipada. Co-simulação eletrotérmica de PCB Usando o Smart PCB gerado no EDA Bridge e transferido para o Simcenter Flotherm para modelar uma placa como uma montagem de rede, os usuários podem configurar uma co-simulação com o software de análise de queda HyperLynx™ PI DC. Esta co-simulação representa com mais precisão a dissipação de energia do traço de cobre da placa, modelando mudanças de resistência elétrica versus temperatura. Ele é configurado na folha de propriedades da PCB e o usuário seleciona as redes apropriadas para modelar. Em cada iteração na co-simulação, os resultados de temperatura são passados para uma análise de queda CC para modelar melhor as mudanças na resistência elétrica do cobre com a temperatura e, em seguida, um mapa de potência de aquecimento joule atualizado da rede elétrica PCB é alimentado na análise térmica no nível do sistema para precisão e previsão de temperatura e assim por diante. Também é possível controlar a frequência com que a informação térmica é passada entre as duas ferramentas, definindo a periodicidade da co-simulação. No geral, esta solução de modelagem eletrotérmica permite que os engenheiros prevejam melhor as influências da temperatura com mais precisão e, em seguida, identifiquem áreas de queda excessiva de tensão e alta densidade de corrente que podem causar mau funcionamento. FloEFD: Uma Solução de Análise Térmica Integrada Com o Simcenter FloEFD , engenheiros podem realizar análises térmicas diretamente no ambiente CAD, aproveitando os dados importados pelo EDA Bridge. Esta integração elimina a necessidade de softwares adicionais para simulação, simplificando o fluxo de trabalho de design. Interface FloEFD A combinação do FloEFD com o módulo EDA Bridge permite uma análise térmica mais precisa e detalhada, otimizando o design de PCBs para melhor desempenho e confiabilidade. A co-simulação eletrotérmica do FloEFD oferece uma visão aprofundada das interações térmicas e elétricas, resultando em designs mais robustos e eficientes. Agende hoje mesmo uma reunião com os especialistas da CAEXPERTS e leve sua análise térmica de PCB para o próximo nível! Economize tempo e esforço com a importação detalhada de designs de PCB e propriedades térmicas de IC no Simcenter FLOEFD . Aproveite os benefícios de uma modelagem térmica mais precisa e rápida, garantindo designs de eletrônicos mais eficientes. Não perca a oportunidade de aprimorar sua análise térmica - agende sua reunião agora com a CAEXPERTS !
- O que há de novo no HEEDS 2410?
O HEEDS 2410 foi projetado para acelerar seu processo de design com os últimos aprimoramentos em tecnologia de IA, robustez e visualização. Uma nova solução de fluxo de trabalho de IA agora está habilitada para ajudar você a reutilizar designs anteriores para acelerar ainda mais suas explorações de design. O HEEDS AI Simulation Predictor é ainda mais enriquecido com recursos estendidos para fluxos de trabalho avançados e aproveitando modelos de IA pré-treinados para iniciar previsões. Integre-se perfeitamente com o Simcenter Reduced Order Modeling , experimente aprimoramentos de robustez para tratamento de erros e explore a visualização dinâmica de modelos 3D para obter novos insights. Modelagem avançada O HEEDS 2410 inclui melhorias de robustez de execução, especialmente para tratamento de erros, tornando-o resiliente a interrupções e erros. Desde o relançamento automático de análises em condições instáveis até opções de nova tentativa que evitam reexecuções desnecessárias, esses recursos aprimoram a robustez e a confiabilidade gerais da execução de análises no HEEDS . Explore as possibilidades Com o HEEDS 2410 , um novo fluxo de trabalho de IA fornece uma abordagem integrada à IA, dos dados ao consumo. Agora você pode reutilizar dados existentes, incluindo dados vindos de outras ferramentas ou experimentos físicos, prepará-los para o pré-treinamento de modelos do HEEDS AI Simulation Predictor e economizar tempo de treinamento para otimizações do HEEDS AI Simulation Predictor. Para habilitar esse novo fluxo de trabalho de IA, o HEEDS AI Simulation Predictor foi aprimorado com a capacidade de suplementar a simulação com previsões para fluxos de trabalho inteiros, fluxos de trabalho parciais ou análises individuais. Os usuários também podem reutilizar modelos de IA pré-treinados para recursos preditivos em diferentes estudos HEEDS . Esse recurso permite que os engenheiros aproveitem o conhecimento existente e o apliquem a novos problemas, economizando recursos e tempo valiosos. Com integração perfeita ao Simcenter Reduced Order Modeling, o HEEDS 2410 permite que os engenheiros maximizem a reutilização de dados e acelerem a análise aproveitando modelos de IA pré-treinados. Esse recurso utiliza grandes quantidades de dados existentes e modelos de IA pré-existentes do HEEDS AI Simulation Predictor ou do Simcenter Reduced Order Modeling, fornecendo uma riqueza de insights de trabalhos anteriores. Ao combinar esses modelos pré-treinados com o Share Designs, o SHERPA pode iniciar imediatamente novas descobertas, o que melhora a eficiência e a eficácia da simulação. Além disso, o HEEDS AI Simulation Predictor agora pode gerar previsões instantaneamente para novas variantes de design, fornecendo insights mais rápidos e acionáveis. Esses avanços permitem que os engenheiros tomem decisões de design informadas mais rapidamente, especialmente valiosas em projetos de engenharia complexos e com uso intensivo de recursos. Desempenho acelerado Com o HEEDS 2410 , a velocidade é priorizada por meio de IA avançada e gerenciamento de dados eficiente. Os aprimoramentos do HEEDS AI Simulation Predictor agora permitem que modelos pré-treinados sejam aplicados instantaneamente. Sejam redes neurais bayesianas, aumento de gradiente ou algoritmos Random Forest, a ferramenta pode maximizar a reutilização de dados aproveitando insights gerados anteriormente. Além disso, a integração do Simcenter Reduced Order Modeling fornece troca de dados perfeita, permitindo que os projetos atinjam seus níveis de desempenho ideais mais rapidamente. Os engenheiros podem aproveitar a IA e o machine learning para conduzir simulações sem construir novos modelos do zero, transformando fluxos de trabalho demorados em processos rápidos que aceleram a exploração do espaço do projeto. Integração com o portfólio Simcenter A visualização 3D dinâmica no HEEDS 2410 dá vida aos designs, permitindo que os engenheiros interajam com visualizações de modelos 3D e comparem cenários em tempo real. A integração com o VCollab permite que os usuários interajam dinamicamente com resultados de design geométrico e de simulação para insights e descobertas eficientes no HEEDS POST, facilitando a revisão do desempenho do produto em vários atributos físicos em um único modelo. Além disso, os usuários agora podem visualizar arquivos de cena do Simcenter STAR-CCM+ diretamente no HEEDS POST, obtendo insights valiosos sem a necessidade de inspecioná-los no Simcenter STAR-CCM+ . Esses aprimoramentos de visualização, combinados com recursos de troca de dados sem interrupções, garantem que os engenheiros tenham uma experiência de revisão de design abrangente e interativa. Ao permanecer integrado em todas as plataformas e ferramentas, o HEEDS 2410 fornece um ambiente unificado que ajuda as equipes a tomar decisões mais informadas. Agende uma reunião com a CAEXPERTS e descubra como o HEEDS 2410 pode revolucionar seus processos de design com soluções avançadas em IA, integração perfeita e visualização dinâmica. Aproveite essa oportunidade para explorar possibilidades, acelerar projetos e tomar decisões mais informadas! WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br
- Simulações de turbinas a gás
A beleza das turbinas a gás Há quem diga que a beleza está nos olhos de quem vê, mas outros acreditam que a beleza pode ser universal. Parece loucura para alguns, mas muitas vezes a maquinaria intrincada e complexa de uma turbina a gás, juntamente com a simulação resultante, é considerada incrivelmente bonita. Há algo hipnotizante em todas as lâminas, válvulas, rotores, bem como nas linhas de combustível e fiação. O formato e a estrutura das lâminas, palhetas, canais e cavidades exibem uma beleza intuitiva, que, segundo especialistas em design, é essencial para o sucesso de uma peça e montagem. Caso contrário, há grande risco de falhas. A teoria é que a física dos fluidos e estruturas deve se alinhar e parecer natural, quase como se viesse da natureza, ainda que seja contraintuitivo diante da complexidade das peças, componentes, fiação, ligas e compostos — o auge da engenharia humana. Assim como as turbinas a gás, as simulações de dinâmica de fluidos computacional (CFD) também são conhecidas por sua capacidade de hipnotizar as pessoas com seus resultados coloridos. E com mais poder computacional, são feitas simulações cada vez mais instáveis com maior fidelidade e física mais complexa. E ainda mais longe e mais rápido com GPUs. E com os avanços no aprendizado de máquina, pode-se ir ainda mais longe e mais rápido. Avanços em simulações de turbinas a gás e aprendizado de máquina A Siemens Energy implementou um fluxo de trabalho de análise e otimização multidisciplinar (MDAO) líder do setor com o suporte das tecnologias de simulação do Simcenter. Este ambiente incorpora recursos avançados, como captura expandida de conhecimento empresarial, assistentes de design alimentados por inteligência artificial (IA) e modelagem de ordem reduzida que podem operar quase em tempo real. Esses avanços, incluindo métodos de ciência de dados como aprendizado de máquina, melhoraram significativamente a qualidade e a eficiência do processo de design. Benefícios das simulações de turbinas a gás Estado atual da arte do fluxo de trabalho de projeto de turbinas a gás A abordagem “clássica” de uma imagem CAD de um conjunto de motor a jato usando NX pode ser observado abaixo. Projetar uma turbina a gás no passado levaria vários anos e nem sempre seria um sucesso. Graças às ferramentas digitais, podemos melhorar o design de hoje facilmente com uma abordagem multidisciplinar de design e otimização. Conjunto de motor a jato (gerado com NX). Embora seja física muito avançada e geometrias complexas, hoje é possível combinar várias dessas etapas de forma automatizada. Mantendo o CAD ativo, as condições de contorno e várias versões permanecem totalmente sob seu controle. O processo de design de um componente é mostrado no esquema abaixo. Isso é feito unindo o CAD do NX a várias ferramentas de simulação CAE, como Simcenter STAR-CCM+ e Simcenter 3D . A automação e a otimização são tratadas pelo HEEDS e todos os dados são gerenciados pelo Teamcenter. Realmente não importa se é maior eficiência por meio da aerodinâmica, melhor integridade mecânica e durabilidade, redução do uso de ar de resfriamento ou novos combustíveis de combustão; todos eles afetam uns aos outros e não há como ser competitivo e inovador a menos que se utilize corretamente métodos modernos de exploração espacial de design multidisciplinar. Processo de design de última geração para um componente de turbomáquinas Para fazer o desenvolvimento de produtos de forma eficaz, queremos avaliar o máximo de designs o mais cedo possível no processo. Dar os próximos passos para o futuro significa combinar isso com aprendizado de máquina, já que o espaço de design pode se tornar grande rapidamente e com muitas disciplinas envolvidas. E se pudéssemos ter um algoritmo de aprendizado de máquina treinando a si mesmo em tempo real no espaço de design que está sendo avaliado atualmente com dinâmica de fluidos computacional (CFD) ou método de elementos finitos (FEM)? Uma melhoria na otimização de design multidisciplinar para engenharia de produtos futuros Para isso, temos duas provas de conceito que estão relacionadas à turbomáquina. Uma é otimizar a eficiência de uma bomba d'água a uma vazão de 110 kg/s e 1200 rpm. Trabalhamos em um modelo parametrizado com 12 variáveis geométricas e o número de lâminas. O HEEDS , um software abrangente de análise e otimização de design multidisciplinar (MDAO), usa seu método de pesquisa padrão, SHERPA, para conduzir várias estratégias de pesquisa simultaneamente e se adapta dinamicamente ao problema à medida que aprende sobre o espaço de design. Com o SHERPA, o HEEDS pode descobrir 300 variações de design em 40 horas. Com a introdução do HEEDS AI Simulation Predictor, uma extensão complementar no HEEDS , a tecnologia de pesquisa do SHERPA é significativamente aprimorada. Algumas simulações de CFD são substituídas por avaliações de IA conduzidas por meio de um modelo de IA treinado automaticamente, aproveitando os insights obtidos nas primeiras simulações - revolucionando esse processo. Nesse caso, ele contou 151 execuções de CFD, enquanto 149 foram feitas com avaliação de IA (para um total de 300). Isso levou cerca de 20 horas, atingindo os mesmos resultados e economizando 49% em tempo. A eficiência da bomba aumentou em 3% e a altura manométrica em 10%. Bomba de água - exploração do espaço de projeto com HEEDS AI Simulation Predictor - resultados CAD Eficiência da bomba de água para vários projetos - exploração do espaço de projeto com o HEEDS AI Simulation Predictor. O segundo caso é uma lâmina de turbina a gás para otimização de resfriamento. Aqui, o objetivo é minimizar a temperatura da lâmina e minimizar o fluxo de massa de ar de resfriamento. Um CAD parametrizado do NX é usado para simular no Simcenter STAR-CCM+ . O CAD tem 34 características parametrizadas no canal serpentino com mudanças de nervuras de resfriamento e furos de chuveiro. As 500 avaliações de design feitas para este caso experimentaram uma economia de tempo aproximada de 38%, pulando simulações de CFD com IA e ainda alcançando a mesma melhor solução. Isso pode significar 20 dias de tempo economizados se 160 núcleos forem usados para cada simulação. Dessa forma, você pode facilmente economizar semanas e meses em projetos e obter um produto melhor mais rápido para o mercado. Temperatura externa e interna para exploração espacial de projeto de lâmina de turbina de transferência de calor conjugada com HEEDS AI Simulation Predictor, NX e Simcenter STAR-CCM+. Frente de Pareto da exploração do espaço de projeto para minimizar a temperatura da lâmina e reduzir os resultados do fluxo de massa da entrada de resfriamento usando o HEEDS AI Simulation Predictor. A partir desses primeiros exemplos de adição de IA e aprendizado de máquina a um fluxo de trabalho CAD-CAE já impressionante, já é possível ver o potencial e como é fácil começar sem ser um especialista em aprendizado de máquina ou otimização. Quão grande será a revolução da IA e do ML e o impacto que ela terá no destino da indústria mecânica é muito cedo para dizer. Mas já sabemos que será a chave para permanecer à frente da concorrência. Tecnologia de gêmeo digital para turbomáquinas. Agende uma reunião com a CAEXPERTS e descubra como os últimos avanços em simulações de turbinas a gás e aprendizado de máquina podem transformar seus projetos. Aproveite essa oportunidade para explorar soluções inovadoras que impulsionam a precisão, eficiência e excelência técnica no seu setor. WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br
- Máquinas rotativas: como a simulação pode ajudar as PMEs a projetar bombas, ventiladores ou compressores eficientes com mais rapidez
Estamos cercados por máquinas rotativas. Bombas, ventiladores, compressores ou turbinas podem ser encontrados literalmente em todos os lugares: Em carros – ventiladores de ar condicionado, turbocompressores, bombas para combustível ou água, bombas de refrigeração para resfriamento de motor e bateria. Em nossos prédios e escritórios – de bombas de calor a compressores de geladeira, secadores de cabelo ou ventiladores de refrigeração eletrônicos em computadores. E, claro, a indústria e o setor de energia nunca funcionariam sem o emprego massivo de turbomaquinaria. Bomba grande (impulsor e voluta) montada por um engenheiro As dimensões dos impulsores e carcaças variam do tamanho de um salão industrial – como para turbinas a gás – a apenas alguns milímetros – por exemplo, para incorporar bombas de sangue. Uma grande variedade de fluidos e gases diferentes que podem ter propriedades bastante desafiadoras precisam ser transportados, como produtos químicos ou outros meios agressivos, gases quentes ou fluidos carregados de partículas. Às vezes, fenômenos como mudança de fase ou fluxo multifásico ou a interação do fluido com as partes sólidas precisam ser levados em consideração. Aplicações médicas como bombas de sangue (veja mais detalhes no exemplo apontado abaixo) ou equipamentos respiratórios precisam estar em conformidade com regulamentações rígidas de tecnologia médica. Também aplicações de alimentos e bebidas exigem altos padrões de higiene e, claro, sempre há requisitos de segurança que devem ser cumpridos. Design tradicional versus métodos computacionais Existem várias abordagens para projetar uma bomba, ventilador, compressor ou turbina. O primeiro passo é decidir sobre o conceito básico e determinar o tipo de impulsor: será um impulsor axial, radial ou de fluxo misto? Com ou sem estatores, palhetas-guia, difusores, volutas ou alojamentos? Será uma máquina de estágio único ou de múltiplos estágios? A maneira "tradicional" então é usar equações analíticas para definir as dimensões principais, bem como os ângulos de fluxo e, portanto, o formato das lâminas. Os cálculos são baseados nos dados de serviço necessários - fluxo de volume, aumento de pressão ou altura da bomba para o ponto de operação do projeto, a velocidade de rotação e as propriedades do fluido. O espaço de instalação disponível, o tipo de acionamento elétrico, bem como os materiais dos impulsores e alojamentos também podem ser relevantes. O projeto da lâmina e do alojamento pode ser realizado usando ferramentas de software disponíveis comercialmente ou personalizadas, planilhas ou até mesmo abordagens baseadas em papel e caneta. Na realidade, processos de fluxo industrialmente relevantes são turbulentos e tridimensionais – isso é ainda mais relevante para o fluxo através de máquinas rotativas. Tais “efeitos do mundo real”, bem como espessura da lâmina, número de lâminas ou a influência de limpezas de ponta ou caminhos de fluxo secundários são negligenciados ou apenas levados em conta por meio de informações empíricas pelas ferramentas de projeto geralmente aplicadas. A lacuna entre o sistema idealizado e o real pode ser fechada com a ajuda das abordagens de simulação do Simcenter, modelando também o comportamento físico mais complexo e detalhes de geometria com alta precisão. Visualização de resultados de fluxo 3D Design do zero ou desenvolvimento incremental? É prática comum para muitos fabricantes modificar incrementalmente projetos já existentes em vez de criar uma máquina completamente nova do zero. Após as mudanças serem implementadas, os protótipos precisam ser construídos e testados experimentalmente. O procedimento é tipicamente repetido várias vezes para encontrar um projeto que atenda aos respectivos requisitos, o que pode ser custoso e muito demorado. Além disso, com tal abordagem, desenvolvedores e engenheiros às vezes tendem a ficar em sua zona de conforto, perdendo assim o potencial para mais eficiência e inovação. Isso pode ser evitado aplicando cálculos CFD 3D ou mesmo métodos de otimização sistemática, envolvendo de forma abrangente todo o espaço de projeto disponível. Otimização do espaço de projeto para máquinas rotativas Melhorias de design normalmente exigem inúmeras iterações por meio de tentativa e erro. Ao alavancar técnicas de otimização automática, as máquinas podem ser projetadas significativamente mais rápido. O Simcenter permite otimizar sistematicamente um design. Diferentes parâmetros de lâmina podem ser tornados acessíveis como variáveis durante a exploração do design, representando assim o formato da lâmina, as principais dimensões e o número de lâminas. Geometria otimizada do impulsor da bomba Dessa forma, também é possível abordar objetivos de simulação contraditórios – por exemplo, aumentar o aumento de pressão ou a altura manométrica da bomba e, ao mesmo tempo, reduzir a potência. O gráfico mostrado aqui ilustra o tradeoff entre os dois objetivos. Cada ponto no diagrama representa um ponto de projeto do impulsor. A linha azul representa uma chamada frente de pareto, onde um objetivo não pode ser melhorado sem mudar o outro para pior. Ao fazer isso, centenas de projetos de impulsor de bomba podem ser comparados. Análise do espaço de design com frente de pareto (linha azul) Resolvendo desafios operacionais com modelagem avançada de comportamento de fluxo Um desafio muito típico e frequente é a cavitação em uma bomba, que ocorre quando a pressão estática em um fluxo cai abaixo da pressão de vapor do fluido, formando bolhas cheias de gás. Elas são levadas para jusante com o fluxo e decaem novamente ao atingir áreas de pressão mais alta. Isso pode levar a efeitos indesejados ou até mesmo perigosos, como ruído, danos a estruturas ou vibração. Um exemplo de como lidar com a cavitação com a ajuda das simulações do Simcenter STAR-CCM+ é demonstrado pela MORFO (Morfo Design Srl), uma startup e spin-off da Universidade de Florença, especializada no desenvolvimento aerodinâmico de turbo máquinas, que foi pioneira na integração de ferramentas paramétricas e de otimização com o Simcenter STAR-CCM+ . O indutor da bomba mostrado aqui aumenta a pressão do fluido criogênico enquanto minimiza os problemas de cavitação, que surgem devido às condições termodinâmicas na entrada (baixa pressão em relação à temperatura). Portanto, está melhorando significativamente a qualidade geral da bomba. A MORFO parametrizou o indutor com “Papillon”, sua própria interface gráfica. O Simcenter STAR-CCM+ foi então usado para realizar um estudo e otimização de CFD, usando vários recursos de modelagem para representar fenômenos complexos como mudança de fase e formulação e transporte de bolhas de gás, bem como a interação das bolhas com o fluxo de fluido. Para poder avaliar a eficiência do indutor e sua robustez contra a cavitação, é crucial representar os mecanismos de cavitação com precisão e examinar também o projeto variando a taxa de fluxo. O objetivo do desenvolvimento aqui era manter uma taxa de fluxo constante e determinar a menor pressão de entrada total possível sem que o indutor perdesse significativamente o desempenho em termos de taxa de compressão. Indutor de bomba: geometria discretizada Visualização de áreas de cavitação Modelagem do comportamento do fluxo de fluidos especializados: bombas de sangue médicas Outro reino onde o comportamento complexo do fluxo deve ser levado em conta são os dispositivos médicos. As bombas são usadas para várias aplicações médicas, por exemplo, para máquinas de suporte ao vivo, onde são usadas para manter a circulação sanguínea em emergências ou durante cirurgias, para ECMO (oxigenação por membrana extracorporativa) ou como bombas de diálise ou infusão. Para bombas de sangue, é crucial operar de forma amigável ao sangue e reduzir a hemólise – destruição de células sanguíneas – bem como a trombogenicidade – coagulação do sangue. Isso pode ser alcançado com a ajuda do CFD 3D, limitando o estresse de cisalhamento no fluido, mantendo a temperatura do sangue abaixo da temperatura corporal e também tentando evitar áreas de fluxo estagnadas ou recirculantes. Bomba de sangue com tensão de cisalhamento nas paredes A Dinâmica de Fluidos Computacional é capaz de fornecer insights detalhados sobre o fluxo de fluido sanguíneo não newtoniano e permite otimizar a bomba de acordo. Boa eficiência da bomba significa baixo consumo de energia e também é uma meta importante. A Terumo Corporation está desenvolvendo tecnologia de última geração, incluindo dispositivos de diagnóstico, dispositivos terapêuticos, terapia regenerativa miocárdica e dispositivos para mercados emergentes, e está usando CFD para desenvolver bombas de sangue para dispositivos cirúrgicos cardiovasculares. A introdução de uma ferramenta de exploração de design baseada em CFD permitiu aumentar a eficiência do desenvolvimento de bombas de sangue, lidar com variações das propriedades do sangue e, eventualmente, levar um design melhor ao mercado mais rapidamente. A equipe de exploração não é um departamento CAE especializado, mas está usando CFD junto com técnicas de otimização para aumentar a eficiência do processo de desenvolvimento do produto e levar um design melhor ao mercado mais rapidamente. Resultados CFD visualizados: impulsor e voluta da bomba Benefícios para PMEs: Gere máquinas rotativas eficientes, mais rápido! Muitas PMEs estão frequentemente trazendo soluções especializadas para o mercado. Ferramentas de design para impulsores e alojamentos têm sido usadas por décadas e são baseadas em suposições simplificadas e informações empíricas, mas para permitir o comportamento físico do mundo real, procedimentos de teste de tentativa e erro muitas vezes caros precisam ser realizados ainda. O CFD 3D pode ser uma boa alternativa para testes físicos extensivos, permitindo insights que não são possíveis experimentalmente. Ao explorar sistematicamente o espaço de design, maior qualidade pode ser alcançada em menos tempo. Fluxos de trabalho sofisticados e automatizados permitem que engenheiros e desenvolvedores se concentrem mais em desafios de engenharia em vez de gastar tempo excessivo em tarefas de modelagem e permitem alavancar a tecnologia de simulação também para não especialistas. Claro que também outras disciplinas além do CFD, como mecânica de estruturas, podem ser abordadas com produtos de software da Siemens. Como resultado, engenheiros e desenvolvedores podem alocar mais tempo e esforço para lidar com desafios complexos de engenharia, analisar resultados de simulação e implementar melhorias inovadoras de design. O uso da simulação Simcenter, disponível por meio de licenciamento e preços escaláveis, os capacita a tomar decisões informadas, melhorar o desempenho e otimizar o processo geral de design, resultando em tempo de comercialização mais rápido e maior qualidade. Agende uma reunião com a CAEXPERTS e descubra como podemos otimizar o desempenho das suas máquinas rotativas. Nossos especialistas utilizam tecnologias avançadas, como o Simcenter STAR-CCM+ , para desenvolver soluções mais eficientes e inovadoras, reduzindo custos e tempo de produção. Vamos juntos melhorar a qualidade do seu projeto e aumentar a eficiência dos seus processos. Entre em contato e leve seu design ao próximo nível! WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br
- Simcenter STAR-CCM+ 2410 lançado! O que há de novo?
A versão Simcenter STAR-CCM+ 2410 traz grandes melhorias para acelerar e melhorar seus fluxos de trabalho de simulação. Ela apresenta ferramentas poderosas para modelar física complexa, como o novo modelo Sub-grid Particle Aging para previsão precisa da degradação da bateria e modelagem avançada de tensão superficial SPH para simulações de lubrificação rápidas e precisas. A versão aumenta a produtividade com instanciação de vários corpos, fornecendo configuração de geometria mais rápida e acelera simulações de Volume de Fluido (VOF) com um novo recurso Dynamic Implicit Multi-Step. Para aplicações de aerodinâmica automotiva e fluidos, a malha deslizante acelerada por GPU e os solvers SPH oferecem ganhos de desempenho significativos, agora com suporte do Windows para GPUs, tornando simulações de alta velocidade acessíveis em todas as plataformas. Melhorias de integração como suporte ao Teamcenter Active Workspace e atribuição automática de material simplificam os fluxos de trabalho, garantindo consistência em todos os projetos de simulação. Com essas atualizações, o Simcenter STAR-CCM+ 2410 permite que você modele a complexidade, explore possibilidades de engenharia e inove mais rápido do que nunca. Fidelidade aprimorada para previsão de degradação de células de bateria A degradação da bateria devido a tensões mecânicas é um desafio significativo, pois pode levar à redução da capacidade e ao aumento da resistência interna ao longo do tempo. No Simcenter STAR-CCM+ 2410 , a introdução de dois modelos de Sub-grid Particle Aging aborda esse problema simulando efeitos de degradação local, incluindo rachaduras durante o ciclo de lítio. Agora você pode usar as opções “Perda de Material Ativo” e “Crescimento de Trincas Superficiais” para entender os impactos específicos do estresse mecânico no desempenho da célula. Isso permite que você identifique as regiões mais afetadas pelo envelhecimento, melhorando as previsões de vida útil e confiabilidade da bateria. Por fim, isso permite uma previsão mais precisa da capacidade da célula e da evolução da impedância. Maior fidelidade para simulações de lubrificação do trem de força A modelagem da interação de líquidos com sólidos apresenta um desafio fundamental em aplicações de lubrificação de trem de força (powertrain). A versão mais recente do Simcenter STAR-CCM+ 2410 aborda isso ao introduzir um modelo de tensão superficial para Smoothed-Particle Hydrodynamics (SPH), permitindo uma simulação precisa, porém rápida, de interações fluido-sólido hidrofílicas e hidrofóbicas. Agora você pode aplicar os mesmos fluxos de trabalho de tensão superficial usados em métodos de volume finito, aumentando a precisão das simulações em cenários de lubrificação e outras aplicações. Esta atualização garante uma modelagem mais precisa das interações líquido-parede, levando a uma melhor previsão do desempenho do produto por meio de maior fidelidade em simulações de lubrificação de trem de força com SPH. Modelagem mais enxuta de problemas complexos de CHT com Motion Configurar problemas complexos de Transferência de Calor Conjugada (CHT) com malhas móveis geralmente requer mapeamento manual de dados, o que pode ser demorado e propenso a erros. Com o Simcenter STAR-CCM+ 2410 , interfaces de contato mapeadas explícitas agora são compatíveis com movimento, eliminando a necessidade de mapeadores de dados manuais e macros Java. Você pode configurar simulações CHT avançadas, como resfriamento de lâmina de turbina ou gerenciamento térmico E-Machine, de forma mais eficiente com mapeamento automático de coeficientes de transferência de calor e temperaturas de referência. Esse aprimoramento permite uma modelagem mais enxuta e direta de problemas complexos de CHT com movimento, economizando tempo e reduzindo a complexidade da configuração. Máxima flexibilidade de modelagem para transição de turbulência A modelagem de transição de turbulência é um tópico de pesquisa em evolução contínua, com inúmeras variações apresentadas na literatura. Cada modelo oferece vantagens específicas para diferentes aplicações industriais. Portanto, para atingir resultados ideais para um determinado caso de uso, a personalização é frequentemente necessária para aumentar a precisão da previsão. O Simcenter STAR-CCM+ 2410 introduz termos de origem definidos pelo usuário para modelos Gamma e Gamma-ReTheta, fornecendo a você a flexibilidade para ajustar o comportamento de transição para aplicações industriais específicas. Essa abordagem permite que você ajuste as simulações para cenários como fluxos de lâminas de turbina, garantindo previsões térmicas e de dinâmica de fluidos mais precisas. A flexibilidade adicional permite que você alcance a personalização máxima da modelagem para atender às suas necessidades específicas. Formas de Colliding Spray precisas e realistas para qualquer malha A modelagem precisa de pulverização pode ser limitada pela influência do tamanho da malha e da topologia da grade nos resultados de colisão, às vezes levando a formas de pulverização irrealistas. O Simcenter STAR-CCM+ 2410 aborda isso com um novo método de detecção de colisão superior que usa clusters de células para identificar pares de colisão e eliminar artefatos relacionados à malha. Ao reagrupar células dinamicamente, esta solução reduz padrões de pulverização irrealistas causados por dependências de malha, como artefatos de "folha de trevo". Como resultado, você pode obter previsões mais confiáveis de tamanhos de gotas e formas de pulverização, garantindo formas de pulverização precisas e realistas, mesmo para malhas aparadas. Maior realismo para aplicações de processamento farmacêutico e químico Simular fenômenos de molhagem em aplicações farmacêuticas e químicas pode ser desafiador devido à necessidade de uma representação precisa das interações líquido-sólido. No Simcenter STAR-CCM+ 2410 , um novo modelo de absorção para interações Lagrangiana-DEM permite que você modele a transferência de massa de gotículas líquidas para partículas sólidas. Esse recurso permite a simulação realista de processos como revestimento de comprimidos, onde a deposição de gotículas na superfície de partículas sólidas deve ser resolvida. Ao modelar o comportamento de molhagem com precisão, você pode obter maior realismo em simulações relacionadas ao processamento farmacêutico e químico. Modele de forma rápida e fácil tensões sólidas em vários estágios e interações fluido-estrutura Em simulações complexas de mecânica de sólidos, lidar com múltiplos estágios de tensão e deformação pode ser desafiador, especialmente quando diferentes condições de carga e parâmetros de contorno precisam ser considerados. Na versão mais recente do Simcenter STAR-CCM+ 2410 , agora você pode utilizar operações de física e simulação em estágios para automatizar casos de tensão sólida em múltiplos estágios e interação fluido-estrutura (FSI). Isso permite que você agrupe conjuntos específicos de cargas e condições de contorno em estágios distintos, simplificando o processo de configuração. Como resultado, você pode modelar eficientemente aplicações sequenciais, como a deformação de um O-Ring sob várias condições, desde ser esticado em um pistão até atingir capacidade total de vedação quando espremido entre componentes. Ao automatizar essas sequências de simulação, você economiza tempo e esforço significativos, mantendo a precisão de comportamentos físicos complexos. Obtenha insights mais profundos sobre os resultados do seu estudo A exploração de design frequentemente gera grandes conjuntos de dados que podem ser difíceis de analisar efetivamente. Com o Simcenter STAR-CCM+ 2410 , você pode executar operações em colunas dentro da Tabela de Saída, usando expressões para calcular métricas como médias, somas ou desvios padrão. Essa funcionalidade semelhante a uma planilha permite derivar relatórios de qualquer combinação de métricas de estudo, dando a você uma compreensão mais profunda de seus resultados. Ao habilitar a criação de relatórios definidos pelo usuário, você pode obter insights mais rapidamente e tomar decisões informadas sobre otimizações de design, permitindo que você obtenha insights mais profundos sobre os resultados do estudo. Análise de campo qualitativa rápida e dinâmica A análise de dados CFD volumétricos pode ser complicada por obscurecer superfícies que escondem detalhes importantes do resultado. O Simcenter STAR-CCM+ 2410 introduz fatiamento e recorte dinâmicos para volumes reamostrados, permitindo que você visualize o conjunto de dados completo enquanto oculta elementos desnecessários. Esse recurso facilita a identificação de áreas de interesse e a compreensão do comportamento do fluxo. A capacidade de fatiar os dados dinamicamente aprimora suas capacidades de exploração e oferece suporte a uma compreensão mais profunda de fenômenos complexos, facilitando a análise de campo qualitativa rápida e dinâmica. Manuseio CAD interativo mais rápido com teclas de atalho definidas pelo usuário Navegar pela interface 3D-CAD para tarefas de pré-processamento de geometria pode ser demorado, impactando a produtividade. Com o novo lançamento do Simcenter STAR-CCM+ 2410 , agora você tem a capacidade de definir teclas de atalho personalizadas para qualquer ação 3D-CAD, fornecendo acesso mais rápido às operações usadas com frequência. Esta atualização não apenas aprimora seu fluxo de trabalho, mas também oferece suporte à colaboração, permitindo a exportação e importação de conjuntos de teclas de atalho definidos entre usuários. A tabela de teclas de atalho também inclui recursos de filtragem e detecção de conflitos, garantindo navegação perfeita e uso ideal de seus atalhos. Essa usabilidade aprimorada no 3D-CAD se traduz em configuração de simulação mais rápida, permitindo que você explore mais iterações de design em menos tempo. Aumento da produtividade e redução do consumo de memória Gerenciar montagens CAD complexas consome tempo, principalmente quando se lida explicitamente com várias instâncias da mesma peça. O Simcenter STAR-CCM+ 2410 aborda isso introduzindo a instanciação de vários corpos, permitindo que você crie instâncias de corpos usando recursos de padrão ou rotação. Permitindo que modificações em uma instância sejam propagadas por todas as instâncias com facilidade, essa abordagem reduz o tempo de preparação da geometria e o uso da memória. Como resultado, você pode lidar com grandes montagens de forma mais eficiente, aumentando a produtividade e reduzindo o consumo de memória. Aceleração de Ordem de Magnitude Acessível para Simulações VOF Simulações de Volume de Fluido (VOF) geralmente exigem tempos de execução longos, limitando sua utilidade para aplicações sensíveis ao tempo. A abordagem Implicit Time Stepping introduzida anteriormente, ao mesmo tempo em que oferecia acelerações, levou a etapas de tempo variáveis, que muitos usuários tentam evitar. Com o novo recurso Dynamic Implicit Multi-Step no Simcenter STAR-CCM+ 2410 , agora você pode obter acelerações de quase duas ordens de magnitude usando etapas de tempo grandes e constantes sem sacrificar a precisão. Essa melhoria é possível por meio de sub-etapas dinâmicas, que mantêm a estabilidade durante a simulação. O resultado são simulações significativamente mais rápidas, permitindo que você obtenha resultados precisos mais rapidamente e tornando acessível a aceleração de ordem de magnitude para simulações de VOF. Malha deslizante acelerada por GPU para aplicações automotivas Para atender aos padrões de emissões de CO2 enquanto lida com uma infinidade de variantes de veículos, ferramentas de simulação mais rápidas são necessárias para aerodinâmica externa do veículo. O Simcenter STAR-CCM+ 2410 introduz simulações de malha deslizante aceleradas por GPU para lidar com rodas giratórias em GPUs, fornecendo desempenho mais de 30% mais rápido em comparação com métodos baseados em CPU. Essa aceleração é crucial para validar emissões de CO2 e desempenho aerodinâmico em testes de conformidade. A velocidade aprimorada permite que você conclua mais iterações de design em menos tempo. Simulações SPH rápidas em GPUs individuais As simulações de Smoothed-Particle Hydrodynamics (SPH) no Simcenter STAR-CCM+ eram limitadas a cálculos baseados em CPU. No Simcenter STAR-CCM+ 2410 , introduzimos um solucionador SPH nativo de GPU que reduz significativamente a simulação em comparação com soluções de CPU. Isso permite que você execute simulações SPH complexas, como análise de fluxo multifásico, muito mais rápido, mantendo a precisão. A transição perfeita e uma base de código compartilhada entre CPU e GPU garantem resultados consistentes, permitindo simulações SPH rápidas em GPUs únicas e aumentando sua produtividade em simulações de dinâmica de fluidos. Obtenha simulações mais rápidas com aceleração de GPU no Windows Até o momento, o uso de GPUs para execuções de simulação aceleradas com o Simcenter STAR-CCM+ foi limitado a sistemas Linux. Com o Simcenter STAR-CCM+ 2410 , os solucionadores de física nativos de GPU agora estão disponíveis no Windows, trazendo melhorias significativas de desempenho para seu fluxo de trabalho. Agora você pode aproveitar a aceleração de GPU em sua estação de trabalho Windows, obtendo reduções no tempo de simulação em até 24 vezes em comparação com execuções somente de CPU. Esse recurso estende o suporte a vários cenários de física, ao mesmo tempo em que fornece resultados consistentes em sistemas Windows e Linux. A capacidade de desbloquear tais melhorias de velocidade no Windows amplia muito a acessibilidade, permitindo que você resolva problemas de grande escala em plataformas mais comumente usadas. Beneficie-se de simulações de fluxo e energia mais rápidas com o solucionador linear de GPU aprimorado Mesmo com a adoção de GPUs, a necessidade de tecnologias de solucionadores mais rápidas continua sendo crítica para simulações complexas. O novo Simcenter STAR-CCM+ 2410 aborda isso incorporando melhorias algorítmicas no solver linear de GPU, aumentando significativamente o desempenho de simulações de fluxo e energia acopladas. Você experimentará as maiores acelerações em casos em que a maior parte do esforço computacional é focada na resolução de sistemas lineares, como aerodinâmica de turbomáquinas e gerenciamento térmico de componentes automotivos. Esta atualização permite que você conclua simulações exigentes com mais eficiência, liberando recursos valiosos para análises adicionais ou estudos de maior fidelidade. Maior confiança nas simulações sendo corretas e relevantes Adicionar novas peças a simulações complexas como um retrofit corretivo pode interromper os fluxos de trabalho se feito de forma ad-hoc manual não orquestrada. O Simcenter STAR-CCM+ 2410 integra o Teamcenter Active Workspace diretamente, permitindo que você adicione peças e atualize automaticamente as informações de rastreabilidade dentro do ambiente de simulação. Essa integração garante que você esteja sempre usando os dados corretos, promovendo a colaboração entre as equipes e melhorando a precisão dos dados em grandes montagens. Como resultado, você pode obter maior confiança nas simulações sendo corretas e relevantes. Atribuição de propriedades de materiais sem emendas de CAD para CFD Atribuir manualmente propriedades de materiais em simulações em larga escala de montagens complexas é tedioso e propenso a erros. O recurso de atribuição automática de materiais no Simcenter STAR-CCM+ 2410 lê metadados de modelos CAD, os compara a bancos de dados de materiais definidos pelo usuário e propaga as atribuições de materiais para as regiões físicas e limites configurados, simplificando o processo de configuração. Essa automação reduz erros e garante propriedades de materiais consistentes em todos os componentes, aumentando a confiabilidade de suas simulações ao permitir a atribuição perfeita de propriedades de materiais de CAD para CFD. Agende uma reunião com a CAEXPERTS e descubra como as melhorias da nova versão Simcenter STAR-CCM+ 2410 podem transformar seus processos de simulação, aumentando sua produtividade e precisão. Não perca a oportunidade de explorar as inovações que vão acelerar suas análises e ajudar a enfrentar desafios complexos de engenharia com resultados mais rápidos e realistas. WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br
- Novidades no Solid Edge 2025: Solid Edge X
Descubra o poder do Solid Edge X — o mesmo Solid Edge que você conhece e ama em um ambiente SaaS seguro. Você pode acessar seus projetos de forma fácil e instantânea, on-line ou off-line. Com atualizações automáticas de software e gerenciamento de TI simplificado, o Solid Edge X oferece uma experiência de usuário perfeita. O gerenciamento de TI simplificado é feito por meio do gerenciamento centralizado de licenças em nuvem, auxiliando em um menor custo de propriedade. O Solid Edge X também é conectado ao Solid Edge e a outros produtos Siemens Xcelerator, utilizando a mesma arquitetura do Solid Edge . Sinta-se seguro com o gerenciamento de dados e colaboração do Solid Edge X A segurança do seu trabalho nunca é comprometida com o Solid Edge X . Cada licença do Solid Edge X inclui gerenciamento de dados em nuvem integrado. Ter um sistema de gerenciamento de dados seguro permite que você atribua e conclua tarefas, crie e gerencie revisões e muito mais durante processos colaborativos. A colaboração aprimorada entre os membros da equipe melhora os fluxos de trabalho, trabalhando para tornar a colaboração um processo sem complicações e contínuo, utilizando o Teamcenter Share. Experiência de usuário flexível Com cada vez mais pessoas trabalhando remotamente em todo o mundo, o local de trabalho requer soluções de software mais acessíveis. As empresas agora precisam fornecer aos seus funcionários uma solução de software flexível que atenda às suas necessidades. O Solid Edge X permite que os trabalhadores baixem e instalem o software ao qual terão acesso em qualquer lugar e a qualquer hora. Isso fornece uma experiência de usuário flexível, tornando o software facilmente acessível. O Solid Edge X funciona on-line e off-line, garantindo produtividade, independentemente do acesso à Internet. Licenciamento baseado em valor O licenciamento baseado em valor permite que os usuários utilizem e explorem uma infinidade de produtos do portfólio Solid Edge a um baixo custo. O Solid Edge X trabalha em conjunto com o licenciamento baseado em valor para fornecer aos usuários a experiência de software mais flexível e perfeita. Em vez de comprar cada produto individualmente, você pode misturar e combinar conforme necessário. O licenciamento baseado em valor inclui Generative Design Pro, Point Cloud Visualization, Solid Edge Simulation Advanced e muitos outros. Trabalhe perfeitamente entre disciplinas O Solid Edge X é integrado a uma infinidade de produtos no portfólio Siemens Xcelerator. Como o Solid Edge X é construído na mesma infraestrutura do Solid Edge , o software funciona sem esforço com o NX CAM e o Simcenter 3D . Assistência de produtividade de IA O Solid Edge X tem novos recursos alimentados por Inteligência Artificial que oferecem assistência em tempo real. A assistência em tempo real fornecida pela IA funciona para minimizar interrupções em seus fluxos de trabalho. Você pode obter respostas para suas perguntas de forma rápida e fácil sem sair do ambiente do Solid Edge X graças ao copiloto de bate-papo da IA. Agende uma reunião com a CAEXPERTS para explorar todas as novidades do Solid Edge X ! Descubra como esse ambiente SaaS seguro e flexível pode transformar sua produtividade e simplificar o gerenciamento de TI, com recursos avançados de IA e colaboração em nuvem. Não perca a oportunidade de ver de perto as possibilidades que o Solid Edge X oferece à sua empresa! WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br
- Gerencie a engenharia de sistemas de acionamento elétrico
“Quando eu era jovem, não havia sinais de veículos elétricos ou eletrificados. Os anúncios de carros eram sobre velocidade e potência. Agora, eles são todos sobre alcance e emissões zero”, comenta Steven Dom, Diretor de Soluções para a Indústria Automotiva da Siemens Digital Industries Software. Não, isso não é um convite para excesso de velocidade. Esses anúncios de 1985 ilustram como as exigências dos clientes mudaram ao longo dos anos. À medida que os veículos elétricos (EVs) mudaram a publicidade, eles também mudaram a engenharia. “Uma equipe de engenheiros encarregada de desenvolver um motor de combustão pode escolher comprar ou projetar uma caixa de câmbio”, continua Steven. “Desde que atendam às especificações do veículo, a decisão é deles. Esse tipo de tomada de decisão solo não é possível em EVs, onde a tendência é claramente ir para unidades de acionamento elétrico integradas ou e-drives nas quais a eletrônica de potência, o motor e o sistema de transmissão que compõem o acionamento são empacotados como uma entidade. De uma perspectiva de fabricação, é mais fácil construir uma caixa integrada, mas para acertar esse pacote, deve haver uma conversa contínua entre cada disciplina de engenharia distinta. Para alguns indivíduos e organizações, isso será um desafio enorme.” Embora os acionamentos elétricos sejam mais simples, leves e eficientes do que os motores tradicionais, seu desenvolvimento é tecnologicamente desafiador. Nossa abordagem integrada à engenharia de acionamentos elétricos permite um rápido redesenho e reutilização do fluxo de trabalho conforme os requisitos mudam, ao mesmo tempo em que permanece conectado a uma plataforma PLM. Gerenciando os desafios da engenharia de sistemas de acionamento elétrico Os especialistas da Siemens Steven Dom e Benoit Magneville, gerente de produtos de eletrificação, abordaram todos os aspectos do desenvolvimento de sistemas de acionamento elétrico e como as organizações podem dar suporte às equipes de engenharia e adotar uma colaboração mais estreita. Como Benoit explica: “O objetivo geral é projetar um acionamento elétrico que seja altamente eficiente em uma ampla gama de condições operacionais, mas há muitos requisitos potencialmente conflitantes. Reduzir a distância entre o inversor e o motor, por exemplo, apresenta benefícios em termos de tamanho geral do pacote, peso do cabo e chicote; no entanto, cria novos desafios térmicos e mecânicos, pois o inversor está evoluindo de forma mais contida.” Outros desafios relacionados ao resfriamento térmico incluem um requisito crítico dentro de um pacote de itens produtores de calor. Considerar sistemas de resfriamento separados para cada componente em um e-drive não é a abordagem mais eficiente. Integrar o sistema de resfriamento para todos os componentes simplificará a construção, eliminando uma série de tubos, bombas e trocadores de calor. Ainda assim, também torna a tarefa de engenharia mais complexa. Além disso, a bateria e os passageiros competem por um gerenciamento térmico eficaz, e o resfriamento apropriado precisará ser fornecido. Além disso, há uma dinâmica complexa entre atingir metas operacionais para o e-drive e prever como o ruído e a vibração são percebidos pelas pessoas sentadas na cabine. De uma perspectiva comercial, o conforto do passageiro é essencial para os fabricantes, particularmente para marcas de alto valor. Abordando o projeto de eletrônica de potência, integração de sistemas e confiabilidade O design da topologia é um dos estágios iniciais do desenvolvimento da eletrônica de um acionamento elétrico. Métricas-chave, como eficiência, custo, tolerância e supressão de EMI, devem ser entendidas para definir a melhor topologia. Muito tempo de engenharia pode ser gasto avaliando como a topologia impacta o veículo e, então, otimizando com base nesses resultados. No entanto, o esforço pode ser desperdiçado se as implicações térmicas forem descobertas apenas no final desse processo. Idealmente, o design térmico e a simulação estão totalmente em sincronia com o design e a avaliação da topologia. A escolha da tecnologia de semicondutores também é importante. Ainda assim, as melhores decisões não podem ser tomadas se você não souber como identificar as características de um semicondutor e comparar as opções disponíveis. “A capacidade de entender a temperatura da junção é fundamental porque isso define a confiabilidade”, diz Benoit. “Você não pode confiar apenas nas classificações de desempenho de um fornecedor ou em um conjunto de resultados de testes.” A avaliação de diferentes semicondutores de banda larga (WBG) e sistemas de gerenciamento térmico de inversores permite decisões aceleradas de tecnologia de inversores e inovação em design térmico. Uma exploração completa e precisa do design eletrônico abrangendo PCB (Printed Circuit Board) e design de Busbar requer integração com CAD mecânico e análise eletromagnética, térmica e estrutural. A solução é que o desenvolvimento ocorra dentro de um único ambiente no qual todos os engenheiros tenham acesso fácil a outras áreas disciplinares, e os especialistas possam interagir uns com os outros. Do dimensionamento inicial do motor elétrico até a validação do desempenho Um requisito fundamental é que a vida útil de um motor seja confiavelmente maior do que a garantia do veículo e a vida útil do veículo. O design térmico é uma das principais maneiras de melhorar a vida útil e o desempenho. “Como de costume, o sucesso começa com a fase de design”, observa Benoit. “Os requisitos do motor elétrico são cascateados a partir das metas de desempenho do EV. A melhor maneira de obter dimensionamento e configuração de motor rápidos e precisos é avaliar rapidamente vários tipos de design e topologias em relação à eficiência eletromagnética, desempenho térmico e vibro acústico ainda na fase de arquitetura.” O vídeo abaixo demonstra um fluxo de trabalho da máquina de fluxo axial, realizado no Simcenter E-Machine Design . Fluxo de trabalho da máquina de fluxo axial O portfólio Simcenter conecta todas essas áreas, permitindo uma avaliação de como o dimensionamento e o design do motor impactam todo o veículo. Nos estágios iniciais, quando o design existe apenas como um conjunto de requisitos operacionais, o Simcenter oferece uma extensa biblioteca de modelos de motor e mais de 200 materiais. Isso abre a possibilidade de identificar uma arquitetura de motor completamente nova que atenderá às metas e gerará o melhor sistema de resfriamento térmico. Qualquer modelo virtual pode ser testado e validado simplesmente exportando-o para o Simcenter Amesim . Maximizando a eficiência da transmissão de acionamento elétrico Do ponto de vista operacional, o desafio é maximizar a eficiência do sistema de transmissão, minimizando o peso e combinando-o com o restante da transmissão dentro dos limites de embalagem. É essencial avaliar as tensões de contato da engrenagem, as forças de rolamento e a flexibilidade do eixo para que o ruído e a vibração da engrenagem rotativa na caixa de engrenagens possam ser previstos com precisão. Novamente, isso significa projetar em relação a vários atributos, incluindo durabilidade e suprimento de óleo para lubrificação. Os fabricantes querem criar veículos mais leves e podem considerar o uso de novos materiais, mas eles trazem desafios específicos porque nem sempre são totalmente comprovados. Outro fator é o orçamento. O custo de prototipar uma única engrenagem pode chegar a US$ 200.000. Portanto, o desempenho precisa ser avaliado minuciosamente, e qualquer falha ou fraqueza prontamente abordada antes que um investimento de capital seja feito. Quer otimizar o desenvolvimento de sistemas de acionamento elétrico e maximizar a eficiência de seus projetos? Agende uma reunião com a CAEXPERTS para discutir como nossa abordagem integrada pode transformar sua engenharia. Nossos especialistas estão prontos para ajudar sua equipe a enfrentar os desafios da eletrificação automotiva, desde a integração de sistemas até o design térmico e vibro acústico. Entre em contato agora mesmo! WhatsApp: +55 (48) 988144798 E-mail: contato@caexperts.com.br











