Simulação CFD na sua Ceia de Natal
- Alvaro Filho

- há 10 horas
- 5 min de leitura

O Natal é um período marcado por encontros, celebrações e, claro, pela preparação de pratos tradicionais. Entre eles, o peru assado ocupa lugar de destaque. Mas o que acontece dentro do forno enquanto o assado está sendo preparado?
Para responder a essa curiosidade de forma técnica e acessível, foi realizada uma simulação usando o Simcenter FLOEFD, um software de Dinâmica dos Fluidos Computacional (CFD), com o objetivo de analisar a circulação de ar e a distribuição de calor em um forno de convecção durante o preparo de um peru.

Modelo do peru no forno de convecção no Simcenter FLOEFD
O cenário da simulação
O peru não apresentava exatamente as dimensões corretas, sendo apenas um bloco sólido. Não havia cavidade para recheio nem para o pescoço, portanto as medidas foram estimadas visualmente e alguns cortes foram realizados. Como uma das questões mais relevantes era a quantidade de fluxo de ar através de diferentes espaços (nas cavidades e sob o peru), foram criados alguns objetos com o objetivo de coletar esses dados. O forno estava configurado no modo de convecção, com um ventilador localizado na parte traseira, responsável por impulsionar o ar horizontalmente sobre a área de assar. Para este modelo, a altura da grelha está definida em pouco mais de 1mm acima do fundo da assadeira.

Cavidade do peru
Este modelo foi executado como uma captura instantânea, o que significa que a temperatura do peru foi definida em um ponto em que ainda não estava totalmente cozido (120 °F). A temperatura do forno foi ajustada para 375 °F, com os elementos de aquecimento posicionados na parte inferior do forno operando a uma temperatura ligeiramente mais elevada, de 400 °F.

Condições de contorno para análise de assador de peru
Inicialmente, observam-se as linhas de fluxo, que são análogas às linhas de fumaça exibidas em testes de túnel de vento utilizados em comerciais de automóveis. Essas linhas indicam a direção do escoamento do ar. O ventilador foi definido como o ponto inicial das linhas de fluxo.
Embora as linhas de fluxo apresentem comportamento bastante caótico, é possível extrair informações relevantes a partir delas. Ao seccionar o modelo, torna-se visível o interior do assador e a cavidade do peru. Em comparação com as linhas de fluxo externas ao peru, observa-se que há pouco ar entrando no assador e passando por baixo do peru, e uma quantidade ainda menor atravessando o interior do peru.
Esse resultado era esperado, especialmente no que se refere ao fluxo de ar na cavidade. O ventilador impulsiona o ar transversalmente à largura do peru, e não ao longo de seu comprimento. Para que o ar entrasse na cavidade, seria necessário contornar o peru e, em seguida, realizar uma curva de 180 graus, o que não é fisicamente plausível. Além disso, devido ao grande porte dos perus, não é possível orientá-los na mesma direção do fluxo de ar gerado pelo ventilador.

O fluxo de ar da ventoinha do forno envolve o peru, cuja cor varia de acordo com a temperatura.

O fluxo de ar do ventilador do forno é direcionado para a assadeira e a cavidade do peru.
Ao se observar um gráfico de contorno da velocidade do ar, passando pelo plano central do peru e do forno, verifica-se que a velocidade do ar através do peru e sob ele é muito baixa, enquanto valores mais elevados são observados acima do peru e abaixo da assadeira.
Considera-se ar de baixa velocidade aquele cuja magnitude é comparável à de um forno de convecção natural, no qual a velocidade típica do ar é da ordem de 0,2 m/s. Dessa forma, não há ganho significativo na transferência de calor proporcionado pelo ventilador, uma vez que a maior parte da superfície do peru está submetida a velocidades do ar inferiores a 0,2 m/s.

Gráfico de contorno da velocidade do ar
Para uma compreensão mais precisa desse comportamento, observa-se um gráfico da velocidade do ar próximo à superfície do peru. A imagem foi dividida em duas partes: uma representando a superfície do peru voltada para o ventilador e outra mostrando o lado oposto. A diferença entre as duas regiões é evidente.
Como consequência, um dos lados do peru tende a cozinhar ou ressecar mais rapidamente do que o outro, caso o alimento não seja girado periodicamente. Velocidades mais elevadas do ar resultam em convecção mais intensa, princípio ilustrado pelo ato de soprar uma sopa para acelerar seu resfriamento.

Velocidade próxima à superfície do peru, perto do ventilador

Velocidade do ar próxima à superfície do peru, oposta à do ventilador
Retomando o gráfico de contorno, ao se analisar a distribuição de temperatura, observa-se claramente que o ar no interior do peru apresenta temperaturas significativamente mais baixas. Isso ocorre devido à estagnação do ar, uma vez que não há circulação efetiva de ar quente dentro do peru.
Observa-se também que, abaixo do peru, no espaço de aproximadamente 1 cm (0,4 polegadas) proporcionado pela grelha, a temperatura do ar é inferior à do restante do forno. Novamente, esse comportamento é explicado pela limitada circulação de ar quente renovado nessa região.

Gráfico de contorno da temperatura do ar ao longo da linha central da Turquia
Questiona-se por que o ar encontra dificuldade para penetrar no espaço entre o peru e o fundo da assadeira. A observação das linhas de fluxo indica que a causa é, essencialmente, a mesma que impede a entrada de ar no interior do peru. O ar proveniente do ventilador tende a seguir o caminho de menor resistência.
Para escoar por baixo do peru, o ar precisaria contornar a parede da assadeira, descer pelo espaço entre o peru e essa parede e, em seguida, realizar uma curva de 90 graus para então fluir sob o peru. Ao longo desse percurso, ocorre redução de velocidade e perda de temperatura. Ambos os fatores são relevantes, uma vez que o ar mais frio tende a descer.
Além disso, como a velocidade do escoamento é inferior à de uma corrente de convecção natural, o ar quente e renovado não consegue deslocar o ar já presente nessa região. Por esse motivo, observa-se que o ar alcança a assadeira, mas não consegue avançar para baixo do peru, passando a recircular próximo à parede da assadeira.

Gráfico de contorno da velocidade do ar e das linhas de corrente ao longo da largura do peru
As imagens fornecem uma boa compreensão qualitativa do fenômeno, porém, em muitos casos, torna-se necessária uma análise quantitativa. A avaliação dos dados indica que o ventilador do forno movimenta aproximadamente 22,8 CFM de ar. A vazão de ar que efetivamente entra e sai da assadeira é de cerca de 0,35 CFM, o que corresponde a aproximadamente 1,5% da vazão total do ventilador.
Em relação ao ar que penetra nas cavidades do peru, foram analisados os fluxos de entrada e saída tanto na cavidade do pescoço quanto na cavidade traseira maior. As vazões medidas foram de 0,08 CFM e 0,146 CFM, respectivamente.
A partir desses resultados, conclui-se que o recheio não é responsável por impedir a circulação de ar no interior do peru, uma vez que essa circulação já é intrinsecamente muito limitada. Isso não exclui o efeito da massa térmica adicional do recheio, que pode resultar em tempos de cozimento mais longos e em carne mais seca — tema que merece análise específica.
Também não se deve esperar circulação significativa de ar sob o peru capaz de produzir uma pele totalmente crocante. É possível que uma grelha mais alta ou uma assadeira com paredes mais baixas promovam alguma melhoria, embora tal efeito seja questionável. Na prática, o uso de uma grelha ou de vegetais como cenouras, aipo ou batatas cumpre função semelhante, ao elevar o peru e afastá-lo da gordura que se acumula.
Quer entender como a simulação pode trazer esse mesmo nível de análise técnica para os desafios reais da sua engenharia? Agende uma reunião com a CAEXPERTS e descubra como soluções em CFD e simulação avançada podem otimizar seus projetos e processos. Aproveitamos para desejar a você um Feliz Natal e um Próspero Ano Novo! 🎄✨
WhatsApp: +55 (48) 98814-4798
E-mail: contato@caexperts.com.br


